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Why do we like Coulomb excitation?

• it’s a very precise tool to measure the collectivity of nuclear excitations and
in particular nuclear shapes
• shape = fundamental property of a nucleus, "condensed" information
about its structure
• excitation mechanism purely electromagnetic, the only nuclear properties
involved: matrix elements of electromagnetic multipole operators
• nuclear structure information extracted in a model-independent way
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Coulomb excitation method

• Cline’s ”safe energy” criterion: purely electromagnetic interaction if the
distance between nuclear surfaces is greater than 5 fm

d = 1.25 · (A1/3
p +A

1/3
t ) + 5.0 [fm]

• The observed excitation depends on:
◦ (Z,A) of the collision partners,
◦ beam energy,
◦ scattering angle.
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Two possibilities to prepare an experiment:
• choose adequate beam energy (D > Dmin for all θ)

low-energy Coulomb excitation

• limit scattering angle, i.e. select impact parameter b (Eb, θ) > Dmin

high-energy Coulomb excitation
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• Electromagnetic interaction well-known → one can easily calculate
Coulomb excitation cross section for any states of the investigated
nucleus when its internal structure is known (i.e. matrix elements of
electromagnetic transitions)

◦ Straightforward method – quantum mechanical treatment: high number
of partial waves, coupled channel equations... IMPRACTICAL !

◦ Simplified and replaced by a semiclassical approach without any
significant loss of accuracy
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Magda Zielińska, CEA Saclay HIL student workshop, 4 March 2013 - p. 7/21

Validity of classical Coulomb trajectories

• η » 1 required for a semiclassical
treatment of equations of motion
→hyperbolic trajectories

• condition well fulfilled in heavy-ion
induced Coulomb excitation

• semiclassical treatment is expected
to deviate from the exact calculation
by terms of the order ≈ 1/η
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Basic facts about Coulex

• Due to the purely electromagnetic interaction the nucleus undergoes a
transition from state |i〉 to |f〉.

• Then it decays to the lower state, emitting a γ-ray (or a conversion
electron).

• The matrix elements 〈f ||M(E2)||i〉 describe the excitation and decay
pattern → they are directly connected with γ-ray intensities observed in the
experiment.

• In the intrinsic frame of the nucleus they are related to the deformation
parameters.
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Basic facts about Coulex experiments

• Due to the purely electromagnetic interaction the nucleus undergoes a
transition from state |i〉 to |f〉.

→ Cline’s "safe energy" criterion – if the distance between nuclear surfaces
is greater than 5 fm, the nuclear interaction is negligible.

→ to properly describe the excitation process - particle detectors needed

• Then it decays to the lower state, emitting a γ-ray (or a conversion
electron).
→ gamma detectors needed

• The matrix elements 〈f ||M(E2)||i〉 describe the excitation and decay
pattern → they are directly connected with γ-ray intensities observed in the
experiment.

• In the intrinsic frame of the nucleus they are related to the deformation
parameters.
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Stable beam experiments

• usually multi-step excitation and complicated level schemes, search for
subtle effects
• beam intensities of the order of pnA → 1010pps: particle detectors usually
at backward angles
• lifetimes of several states known: no need for other kind of normalisation
• statistics enough for particle-gamma angular correlations

178Hf

A. Hayes et al., PRC 75 (2007) 034308
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Exotic beam experiments

• usually one- or two-step excitation; level schemes not well known on the
neutron-rich side

• beam intensities rather low: particle detectors at forward angles to
maximise the statistics

• normalisation to target excitation or Rutherford scattering needed

• low statistics, sometimes only one gamma line observed

• differential measurements at the limits of feasibility

• high background from β decay
→ experiments without particle detection impossible
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Magda Zielińska, CEA Saclay HIL student workshop, 4 March 2013 - p. 18/21

Reorientation effect

• influence of the quadrupole moment of the excited state on its excitation
cross-section

• dependence on scattering angle and beam energy

• direct measurement of the nuclear shape

• BE CAREFUL – influence of double-step excitation of higher states may
have the same effect!
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Coulomb excitation and lifetime measurements
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• subdivision of data in several ranges of
scattering angle

• spectroscopic data (lifetimes, branching
and mixing ratios)

• least squares fit of ∼30 matrix elements
(transitional and diagonal)

• results inconsistent with
previously published lifetimes

• new RDM lifetime
measurement:
Köln Plunger & GASP
40Ca (40Ca,α2p) 74Kr
40Ca (40Ca,4p) 76Kr
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Lifetime measurement A. Görgen et al. EPJ A 26 153 (2005)

old new old new

2+ 35.3(10) ps 41.5(8) ps 2+ 28.8(57) ps 33.8(6) ps76Kr

4+ 4.8(5) ps 3.87(9) ps

74Kr

4+ 13.2(7) ps 5.2(2) ps

74Kr, forward detectors (36◦)

gated from above
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• new lifetimes in agreement with Coulex

• enhanced sensitivity for diagonal and
intra-band transitional matrix elements
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Results: shape coexistence in light Kr isotopes

76Kr: 18 transitional + 5 diagonal ME
74Kr: 14 transitional + 5 diagonal ME
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First measurement of diagonal E2 matrix elements using Coulex of radioactive beam

E. Clément et al. Phys. Rev. C75, 054313 (2007)
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