

Few-Body Systems

Testing different pieces of the few-nucleon system interaction models with the help of ${}^{1}H(\vec{d},pp)n$ breakup reaction

Stanisław Kistryn Institute of Physics Jagiellonian University Kraków, Poland

Nucleon-Nucleon Interaction Basis of Nuclear Physics

Modern NN potentials are in general able to

- * reproduce properties of nuclear matter (eq. of state)
- reproduce binding energies of light nuclei
- reproduce global features of the bulk of the scattering observables in 2N and 3N systems

Role of precise knowledge of few-nucleon system dynamics

- > fundamental for description of nuclei and nuclear processes
- key feature for application in calculation/simulation codes (fast reaction stage - INC, QMD, etc.); radiation shielding, spallation targets, dosimetry, medical irradiation procedures, biological and astrophysical models, ...

Two-Nucleon System Nucleon-Nucleon Potential

Meson exchange theory of NN force

Two-Nucleon System Standard Interaction Models

- Meson exchange theory of NN forces nucleonic degrees of freedom (CD Bonn, Nijm I, Nijm II, AV18)
- □ CD Bonn + explicit treatment of a single ∆-isobar degrees of freedom coupled barion channels

3N System Dynamics - St. Kistryn IF UJ

Two-Nucleon System Effective Field Theory

Chiral Perturbation Theory

- □ NN effective potential obtained by systematic expansion in powers v of small external momenta Q, $(Q/\Lambda_X)^v$, with $\Lambda_X \approx 1 \text{ GeV}$ (Ch. Sym. breaking scale); "easy" for π - π and π -N scattering amplitude, more demanding for N-N interaction
- □ Two kinds of contributions:
 - > pion(s) exchanges (vertices of different order)
 - > contact interactions (low energy constatnts)

Two-Nucleon System EFT / ChPT Potential Model

3N System Dynamics - St. Kistryn IF UJ

Two-Nucleon System Description of Data

Modern realistic NN potentials provide an excellent fit of all data from the 2N system

χ^2 / data point

	CD Bonn	NijmI	NijmII	Av18	Coupl.Ch.
No. of parameters	45	41	47	40	~40
pp data	1.01	1.03	1.03	1.35	1.02
np data	1.02	1.03	1.03	1.07	1.03

Also the EFT/ChPT approach, with increasing order describes the 2N system very accurately - significant improvement from NLO to NNLO to NNNLO (26 LECs)

3N System Dynamics - St. Kistryn IF UJ

Is Two-Nucleon Dynamics Enough?

Three-nucleon system is the simplest nontrivial environment to test predictions of the NN potential models

Needed theoretical formalism which allows to conclude on physical input underlying the calcuated observables; i.e. avoiding any approximations of the assumed dynamics (due to numerical complexity)

Numerical solutions of the Faddeev equations (W.Glöckle, H.Witała et al.)

Three-Nucleon System Faddeev Equations

Operators T₁,T₂,T₃, according to the last pairwise NN int.:

Solution in partial-wave basis (off-shell t) – up to $j_{max} \& J_{max}$ **RP**: $j_{max}(NN) = 5$, $J_{max}(3N) = 25/2$, Jmax(3NF) = 13/2 **CC**: $j_{max}(NN) = 5$, $j_{max}(N\Delta) = 4$, Jmax(3B) = 31/23N System Dynamics - St. Kistryn IF UJ SLCJ Workshop; March 5, 2013 9

Is Two-Nucleon Dynamics Enough ? Bound States of Few Nucleons

	³ Н	³ He	⁴ He
Experimental	-8.48	-7.72	-28.3
CD Bonn	-8.01	-7.29	-26.3
NijmII	-7.66	-7.01	-24.6
Av18	-7.62	-6.92	-24.3
Coupl. Chan.	-8.00	-7.26	-26.1
ChPT-NNLO	-8.04	-7.22	-26.6
INOY-nonlocal	-8.46	-7.70	-29.1

Predictions of NN potentials alone obviously fail to reproduce 3N, 4N binding energies (E_B [MeV])

Elastic Nucleon-Deuteron Scattering Observables

3N System Dynamics - St. Kistryn IF UJ

- o Differential Cross Section
 - > Overall strength
- Spin Observables:
 - Vector Analyzing Power *iT*₁₁
 L·*S* interaction
 - Tensor Analyzing Powers T_{20} , T_{21} , T_{22}
 - > Tensor interaction (D-state)
 - > $(L \cdot S)^2$ interaction
 - Correlation Coefficients $C_{ij}^{k'}$
 - Transfer Coefficients K_{ij}^{k'}
 Spin-Spin interaction

Is Two-Nucleon Dynamics Enough? Total Cross Section

Predictions of NN potentials cannot reproduce energy dependence of the total cross section of the n+d scatterng

Is Two-Nucleon Dynamics Enough ? Elastic Nucleon-Deuteron Scattering

Predictions of NN potentials alone fail to reproduce minimum of the d(N,N)d elastic scattering cross section

Pairwise Nucleon-Nucleon Interaction is not Enough !

 Introducing concept of three-nucleon forces : genuine (irreducible) interaction of three nucleons

> how well matched to NN potential ?

Implementing 3NF into Faddeev framework (without affecting numerical accuracy)

$$V = \sum V_{NN} + V_4$$

$$T = tP + (1+tG_0)V_4(1+P) + tPG_0T + (1+tG_0)V_4(1+P)G_0T$$

Three-Nucleon System Realistic/Coupled Channels Pot. & 3NF Models

- Three-nucleon forces only weak connection to the NN potentials (TM99, Urbana IX, Brazil)
- Competing Δ-excitation effects (two nucleon dispersion and effective 3NF) resulting net Δ influence is rather small

Three-Nucleon System 3NF within ChPT

Three-nucleon forces appear naturally, fully consistent with the 2N graphs

NLO:

All contributions cancel out !

NNLO:

Three possible topologies

3NF Effects Bound States of Few Nucleons

Predictions of NN potentials with 3NF models for 3N, 4N bounding energies (E_B [MeV]) do much better

		³ Н	³ He	⁴ He
	Experimental	-8.48	-7.72	-28.3
	CD Bonn	-8.01	-7.29	-26.3
	NijmII	-7.66	-7.01	-24.6
	Av18	-7.62	-6.92	-24.3
$\left(\right)$	CD Bonn + TM99	-8.48	-7.73	-29.2
)	NijmII + TM99	-8.39	-7.72	-28.5
	Av18 + TM99	-8.48	-7.76	-28.8
U	Av18 + UIX	-8.48	-7.76	-28.5
	CC CD Bonn + Δ	-8.36	-7.64	-28.4

E_B(³H) used in ≺ 3NF fit

3NF Effects Bound States of Few Nucleons

3N System Dynamics - St. Kistryn IF UJ

Predictions of NN potentials with 3NF models better reproduce minimum of the d(N,N)d scattering c.s.

Effects of 3NF in d(N,N)d c.s. minimum are energy dependent - *relative* enhancement of the effect with the incident energy

3N System Dynamics - St. Kistryn IF UJ

3N System Dynamics - St. Kistryn IF UJ

3NF Effects Elastic Deuteron-Nucleon Scattering

65 MeV/A

90 MeV/A

Effects small, located at extreme angles only !

3N System Dynamics - St. Kistryn IF UJ

pd a	ndno	1 Elasti	c Scatte	ering at	70-400	MeV/nucl	eon
Obser	vable	10	00	200	300		100
$\frac{d}{ds}$	σ Ω	•		••	•		•
ず え	$A_y^{\ p} \\ A_y^{\ n}$		•••	• ••	•		•
\vec{d}	A_y^{d}	• •	•	•	•		•
	A _{yy} ⊿						
	A_{xz}	••	•	•	•		
$\vec{p} \rightarrow \vec{p}$	K _y ''				•		
	$K_x^{x'}$				•		
	K_x^{-} $K_x^{x'}$		π thres	hold	•		
	K _z ^{z'}				•		
$\vec{d} \rightarrow \vec{p}$	$K_{y}^{y'}$	•	٠				
	$K_{xx}^{y'}$		•				
	$K_{yy}^{K_{yy}}$ $K_{rr}^{y'}$	•	•				
$\vec{p} \rightarrow \vec{d}$	 Ky'						•
pd	C _{ij}		•	•			
	C _{ij,k}		٠	٠			
							<u> </u>

3N System Dynamics - St. Kistryn IF UJ

Number of observables for the elastic scatterng channel, allowing a multidimensional study of 3NF

- Only fraction has been measured accurately and systematically (RIKEN/RCNP/IUCF/KVI)
- Not completely clear picture
 still much to explore !
- Complementary studies
 needed at much richer field:
 Nucleon-Deuteron Breakup

Elastic Nucleon-Deuteron Scattering RIKEN Facility – SMART

3N System Dynamics - St. Kistryn IF UJ

Three-Nucleon System in Continuum

Cross Sections and Analyzing Powers of the ${}^{1}H(d,pp)$ n Breakup at 130 MeV

- Very few breakup data at medium energies (earlier PSI experiments - only 14 kinematical configurations)
- To reach meaningful conclusions about the interaction models needed experimental coverage of large phase space regions
- Different effects to be traced
 - Influences of 3NF
 - Coulomb force action
 - > Relativistic effects

3N System Dynamics - St. Kistryn IF UJ

Breakup Reaction Kinematics

- □ Three nucleons in the final state 9 variables
- Energy-momentum conservation 4 equations
- Five independent kinematical variables
 - ✓ Complete (exclusive) exp. measured \geq 5
 - \checkmark Inclusive exp. measured \leq 4 parameters

¹H(d,pp)n Measurement at 130 MeV Experimental Highligths

 Polarized (vector & tensor) deuteron beam (50 pA, point-like focus on target)

- \Box Liquid H₂ target (4 mm thickness)
- Determination of energies and emission angles of both protons
- Simultaneous measurement of the d-p elastic scattering channel
 - > Absolute cross section normalization
 - > Polarization monitoring
 - > Geometry checks

¹H(d,pp)n Measurement at 130 MeV Kernfysisch Versneller Instituut, Groningen

3N System Dynamics - St. Kistryn IF UJ

¹H(d,pp)n Measurement at 130 MeV Small Area Large Acceptance Detector

- \checkmark 140 \triangle E-E telescopes
- ✓ 3-plane MWPC
- Angular range :
 θ = (12°, 35°), φ = (0°, 360°)

MWPC

¹H(d,pp)n Measurement at 130 MeV On-Line Event Classification (Trigger Logic)

3N System Dynamics - St. Kistryn IF UJ

SLCJ Workshop; March 5, 2013

33

¹H(d,pp)n Measurement at 130 MeV Apparatus – SALAD Detector

Projection of ΔE -E telescopes on the MWPC

Trigger definitions:

- 1. Single events •
- Coincidences elastic scattering candidates
- **3.** Coincidences breakup events
 - adjacent sectors
 - single sector •

3N System Dynamics - St. Kistryn IF UJ

$^{1}H(\vec{d},pp)n$ Measurement at 130 MeV Data Analysis – ΔE -E Particle Identification

¹H(\vec{d} ,pp)n Measurement at 130 MeV Data Analysis – E₁-E₂ Kinematical Spectra

Narrow and background-free kinematical spectra over the whole angular range

3N System Dynamics - St. Kistryn IF UJ

¹H(\vec{d} ,pp)n Measurement at 130 MeV Data Analysis – Δ E-E Array Image on MWPC

MWPC projections for certain single events:

- Condition: no hit in ΔE detector
- 2. Condition: hits in 2 adjacent E detectors
- 1 & 2 overlayed: image of ΔE-E telescopes on the MWPC plane

¹H(\vec{d} ,pp)n Measurement at 130 MeV Data Analysis – E₁-E₂ Kinematical Spectra

Projection of events on the kinematical curve

¹H(d,pp)n Measurement at 130 MeV Data Analysis – Cross Section Normalization

Reliable normalization of the breakup cross sections to the simultaneously measured ¹H(d,pd) elastic scattering

¹H(d,pp)n Measurement at 130 MeV Data Analysis – Cross Section Normalization

Rate of breakup p-p coincidences:

$$N_{br}(S,\Omega_{1},\Omega_{2}) = \frac{d^{5}\sigma}{d\Omega_{1}d\Omega_{2}dS}(S,\Omega_{1},\Omega_{2})\cdot\Delta\Omega_{1}\Delta\Omega_{2}\Delta S \times \\ \times \int_{0}^{\Delta t} I_{d}dt \cdot \rho_{t}D_{t} \cdot (1-\tau)\cdot\varepsilon(\Omega_{1},E_{1})\varepsilon(\Omega_{2},E_{2})$$

Rate of elastic p-d coincidences:

$$N_{el}(\Omega_1^{el}) = \frac{d\sigma}{d\Omega_1^{el}}(\Omega_1^{el}) \cdot \Delta\Omega_1^{el} \cdot \int_0^{\Delta t} I_d dt \cdot \rho_t D_t \cdot (1-\tau) \cdot \varepsilon(\Omega_1^{el}, E_1^{el}) \varepsilon(\Omega_2^{el}, E_2^{el})$$

Normalized breakup cross section:

$$\frac{d^{5}\sigma}{d\Omega_{1}d\Omega_{2}dS}(S,\Omega_{1},\Omega_{2}) = \frac{d\sigma}{d\Omega_{1}^{el}}(\Omega_{1}^{el}) \cdot \frac{N_{br}(S,\Omega_{1},\Omega_{2})}{N_{el}(\Omega_{1}^{el})} \times \frac{\Delta\Omega_{1}^{el}}{\Delta\Omega_{1}\Delta\Omega_{2}\Delta S} \cdot \frac{\varepsilon(\Omega_{1}^{el},E_{1}^{el})\varepsilon(\Omega_{2}^{el},E_{2}^{el})}{\varepsilon(\Omega_{1},E_{1})\varepsilon(\Omega_{2},E_{2})}$$

¹H(d,pp)n Measurement at 130 MeV Cross Section Results – Example

Faddeev calculations

Realistic NN potentials CD Bonn, Nijml, Nijmll, Av18

3NF models: TM99, UIX

Coupled channel pot.

CD Bonn (mod) + Δ

EFT/ChPT potentials

NNLO – 2N only

NNLO – 2N + 3 N

3N System Dynamics - St. Kistryn IF UJ

41

¹H(d,pp)n Measurement at 130 MeV Cross Section Results – Summary

✓ Nearly <u>1800</u> cross section data points

- θ_1 , $\theta_2 = 15^\circ 30^\circ$; grid 5° ; $\Delta \theta = \pm 1^\circ$
- an additional set for θ_1 , $\theta_2 = 13^\circ$
- $\phi_{12} = 40^{\circ} 180^{\circ}$; grid $10^{\circ} 20^{\circ}$; $\Delta \phi = \pm 5^{\circ}$
- S[MeV] = 40 160; grid 4; $\Delta S = \pm 2$
- > Statistical accuracy 1% 4%
- > Data very clean accidentals below 2%
- > Systematic errors of 3% 5%
- Global comparisons with theory (χ^2 for all points, $\chi^2 = f(\varphi_{12}), \chi^2 = f(E_{rel}),$ tests of normalization)

¹H(d,pp)n Measurement at 130 MeV Cross Section Results – Exploring Phase Space

Breakup cross section is a function on 4-dim phase space.

With rich data one might (and should !) explore it by means of projections.

¹H(\vec{d} ,pp)n Measurement at 130 MeV Cross Section Results – E_{rel} Dependence & 3NF's

3N System Dynamics - St. Kistryn IF UJ

SLCJ Workshop; March 5, 2013

44

¹H(d,pp)n Measurement at 130 MeV Cross Section Results – Discrepancies

¹H(d,pp)n Measurement at 130 MeV **Cross Section Results – Discrepancies Cured**

Predictions with Coulomb reproduce data much better !

¹H(\vec{d} ,pp)n Measurement at 130 MeV Cross Section Results – E_{rel} Dep. & Coulomb

¹H(d,pp)n Measurement at 130 MeV Cross Section Results – 3NF & Coulomb Effects

In the realistic potentials approach and within the ChPT only n+D system was considered

Now Coulomb effects <u>and</u> phenomenological 3NF can be calculated simultaneously !

A. Deltuva, Phys. Rev. C 80 (2009) 064002

Quantitative comparison of the role of both contributions

¹H(d,pp)n Measurement at 130 MeV Cross Section Results – 3NF & Coulomb Effects

¹H(d,pp)n Measurement at 130 MeV Cross Section Results – Coulomb Effects

of KVI experiment

3N System Dynamics - St. Kistryn IF UJ

¹H(d,pp)n Measurement at 130 MeV Germanium Wall Exp. @ COSY / BigKarl

3N System Dynamics - St. Kistryn IF UJ

¹H(d,pp)n Measurement at 130 MeV Germanium Wall Exp. @ COSY / BigKarl

¹H(d,pp)n Measurement at 130 MeV Germanium Wall Exp. @ COSY / BigKarl

¹H(d,pp)n Measurement at 130 MeV FZJ Cross Section Results – Summary

✓ Nearly <u>2700</u> cross section data points

- θ_1 , $\theta_2 = 5^\circ 13^\circ$; grid 2° ; $\Delta \theta = \pm 1^\circ$
- $\phi_{12} = 20^{\circ} 180^{\circ}$; grid 20° ; $\Delta \phi = \pm 5^{\circ}$
- S[MeV] = 40 180; grid 4; $\Delta S = \pm 4$
- > Statistical accuracy 2% 5%
- > Data very clean accidentals below 2%
- > Systematic errors of 5% 10%

X Certain configs. still with large systematic uncert.

✓ Global comparisons with theory: χ^2 /d.o.f. $\chi^2 = f(\phi_{12}), \ \chi^2 = f(\theta_1, \theta_2), \ \chi^2 = f(E_{rel})$

¹H(d,pp)n Measurement at 130 MeV Cross Section Results – Examples

¹H(d,pp)n Measurement at 130 MeV Cross Section Results – Averaging

3N System Dynamics - St. Kistryn IF UJ

SLCJ Workshop; March 5, 2013

²H(p,pp)n Measurements Cross Section Results – Relativistic Effects

¹H(d,pp)n Measurements at 130 MeV **Summary**

- Systematic, precise sets of cross sections (and analyzing powers → E.S.) obtained at E_d = 130 MeV
 ⇒ basis for comparing different approaches which predict the 3N system observables
- Showed significant 3NF effects for cross sections !
- □ Found large influence of the Coulomb force on c.s.
- Relativistic effects to be studied in detail
- Interplay of different ingredients of 3N system dynamics inspection started !
- Discrepancies hint of missing pieces in dynamic models
- Follow further precise and rich data sets, as well as theoretical advances !

Breakup Measurements Outlook and Wishes (3N and 4N systems)

- Prospects for further results:
 - > Evaluating the data accumulated in several experiments at KVI
 - > More measurements:
 - > Japan: RIKEN, RCNP, RIBF, ...
 - > Projects for PAX@COSY & WASA@COSY
 - > INP Cracow

3N System Dynamics - St. Kistryn IF UJ

SLCJ Workshop; March 5, 2013

60

Few-Body Research at IFJ PAN Kraków Cyclotron Center Bronowice

3N System Dynamics - St. Kistryn IF UJ

Breakup Measurements Outlook and Wishes (3N and 4N systems)

- Prospects for further results:
 - > Evaluating the data accumulated in several experiments at KVI
 - > More measurements:
 - > Japan: RIKEN, RCNP, RIBF, ...
 - > Projects for PAX@COSY & WASA@COSY
 - > BINA@INP Cracow
- Personal, surely incomplete view Awaited theoretical achievements:
 - > 3NF at $N^{3}LO$ (close ahead...)
 - > ChPT with Δ (work in progress...)
 - Realistic potentials with Coulomb
 - > Rigorous calculations for 4N system (dreamed for !)

22-nd EUROPEAN CONFERENCE ON FEW-BODY PROBLEMS IN PHYSICS CRACOW, POLAND 9 - 13 September 2013

> Thank You for attention

> > Contact addresses: stanislaw.kistryn@uj.edu.pl jacek.golak@uj.edu.pl