In-Beam Fast-Timing Technique for Nuclear Structure Studies

S. Lalkovski

27 February 2013

Intro
Particle- γ methods

$$
\gamma-\gamma \text { methods }
$$

Overview

Definitions

- Decay modes: α, β, γ, fission, proton emission, neutron emission etc.;
- Radioactive decay low: $A=A_{0} \exp ^{-\lambda t}$, where
λ is the decay constant
$\tau=1 / \lambda$ is the mean lifetime
$T_{1 / 2}=\ln 2 \times \tau$ is the half-life
$\lambda=\sum_{i} \lambda_{i}$, where λ_{i} is the partial decay
constant
- Typical time range: 45 orders of magnitude; Extremes: ${ }^{1} \mathrm{H}$, stable

$$
A=294, Z=117, T_{1 / 2}=0.08 \mathrm{~s}
$$

$$
{ }^{50} \mathrm{~V}, \mathrm{EC}, T_{1 / 2}>2.1 \times 10^{17} \mathrm{y} .
$$

${ }^{8} \mathrm{Be}$, ground state:
$T_{1 / 2}=1.4 \times 10^{-19} \mathrm{~s}$;
 first excited state:

$$
T_{1 / 2}=7.1 \times 10^{-22} \mathrm{~s}
$$

Overview

Definitions

- Decay modes: α, β, γ, fission, proton emission, neutron emission etc.;
- Radioactive decay low: $A=A_{0} \exp ^{-\lambda t}$, where
λ is the decay constant
$\tau=1 / \lambda$ is the mean lifetime
$T_{1 / 2}=\ln 2 \times \tau$ is the half-life
$\lambda=\sum_{i} \lambda_{i}$, where λ_{i} is the partial decay
constant
- Typical time range: 45 orders of magnitude; Extremes: ${ }^{1} \mathrm{H}$, stable

$$
\begin{aligned}
& A=294, Z=117, T_{1 / 2}=0.08 \mathrm{~s} \\
& { }^{50} \mathrm{~V}, \mathrm{EC}, T_{1 / 2}>2.1 \times 10^{17} \mathrm{y} . ; \\
& { }^{8} \mathrm{Be}, \text { ground state: } \\
& T_{1 / 2}=1.4 \times 10^{-19} \mathrm{~s} ; \\
& \text { first excited state: } \\
& \quad T_{1 / 2}=7.1 \times 10^{-22} \mathrm{~s}
\end{aligned}
$$

$\leqslant--\mathrm{CB} \rightarrow \quad *-\mathrm{CE}--\quad>$

Methods

- PR Proton Resonances
- DSA Doppler Shift Attenuation
- ET Electronic timing
- NRF Nuclear Resonance Fluorescence
- RDDS Recoil Distance Doppler Shift
- CB Channel blocking
- CE Coulomb excitation

Fast-slow coincidence circuit

Method

The coincidence circuit measures the distribution of the delayed time signals formed by the "start-stop" TAC time difference.

Pulse signals

UNIPOLAR

Definitions

- Baseline: The BL of the signal is the voltage/current to which the pulse decays.
- Pulse height or Amplitude: The Amplitude is the height of the pulse as measured from the maximum value to the baseline.
- Signal width: SW is usually measured by the FWHM.
- Leading Edge: The LE is the flank of the signal which comes first in time.
- Rise time: The time that takes for the pulse to rise from 10% to 90% of its full amplitude.
- Falling edge or Tail: The FE is the flank which comes last in time.
- Fall time: The time it takes to the signal to fall from 90% to 10% of its amplitude.
- Unipolar pulse: The pulse is on one side of the baseline, forming only one major lob.
- Bipolar pulse: The bipolar pulse crosses the baseline forming a second major lob on the opposite side of the baseline.

Timing technique

Fig. 1. Jitter and Walk in Leading-Edge Time Derivation.

Leading Edge Discriminator

LED incorporates a voltage comparator with a threshold, which can be set to a given voltage. When the leading edge of the analog pulse crosses this threshold the comparator generates a logic pulse. The logic pulse ends when the trailing edge of the analog pulse crosses the threshold in the opposite direction. The initial transition of the logic pulse is used to mark the arrival time of the analog pulse.

Main Timing Constrains

The jitter is caused by the electronic noise, superimposed on the analogue signal. The jitter depends on the photons generation rate in the crystal, variations in the photon transit time in the crystal, variations of the photo-electron transit time from the cathode to the first dynode, statistical fluctuations in the gain of the individual dynodes;
The walk effect is caused by the time dependence on the amplitude of the signal, i.e. signals with different amplitudes cross the threshold in different moments;

Timing technique

Constant Fraction Discriminator

The input signal is split into two parts. One part is attenuated to a fraction f of the original amplitude, and the other part is delayed and inverted. These two signals are subsequently added to form the constant-fraction timing signal. The method reduces significantly the walk, caused by the amplitude dependence.
The walk and the jitter are minimized by proper adjustment of the zero-crossing reference, and by selection of the correct attenuation factor and delay.

CFD Walk adjustment

Fia. 11. Svstem Interconnection to View Walk Adiustment.

Time-to-amplitude converter

- The CFD "start" signal opens the "start" switch. The capacitor begins to charge.
- The CFD "stop" signal opens the "stop" switch, which prevents any further charging of the capacitor. Because the charging current I is constant, the voltage developed on the capacitor is given by

$$
V=\frac{I t}{C}
$$

t is the time interval between start and stop pulses. C is the capacitance of the converter capacitor, i.e. the voltage is proportional to the time interval.

- The voltage pulse is passed through the buffer amplifier to the linear gate.
- A short time after the stop pulse arrives, the linear gate switch opens to pass the voltage pulse through the output amplifier to the TAC output.
- Few microseconds latter, all switches return to the closed condition, which terminates the output pulse and discharges the capacitor to ground potential.
The result is a rectangular output pulse with a width of a few microseconds and an amplitude that is proportional to the time interval between the start and stop pulses. This pulse is typically fed to an ADC or a multichannel analyzer for pulse-height measurement.

Fast-slow coincidence circuit

Calibration

- Use of a single PMT do deliver both "start" and "stop" TAC signals.
- Use of a source, which issues "simultaneously" particles and/or gammas.

Prompt response function

B.Bengtson and M.Moszýnski, NIM204 (1982) 129

Figure

- Start: $1^{\prime \prime} \times 1 / 2^{\prime \prime} \mathrm{NaI}(\mathrm{TI})$ coupled to XP2020 PMT
-Stop: BIBUQ (organic) scintillator
-Source: ${ }^{60} \mathrm{Co}$
- $\Delta E / E=20 \%$ at 930 keV
- $\Delta t=290 \mathrm{ps}$ from the dynode, 360 ps from the anode

Finite τ

For finite lifetimes τ, the time distribution $F(t)$ of the TAC output signal presents a convolution of the PRF with the exponential decay:

$$
F(t)=\int \exp \left(-t^{\prime} / \tau\right) P\left(t-t^{\prime}\right) d t^{\prime} / \tau
$$

Depending on the time range, the lifetime can be evaluated by using \bullet the slope method, when $P(t) / F(t) \ll 1$

- the centroid shift method, when $P(t) / F(t) \gg 1$
- deconvolution, when $P(t) / F(t) \approx 1$

Prompt response function

B.Bengtson and M.Moszýnski, NIM204 (1982) 129

	Organic scintillators ${ }^{\text {d }}$			
	1952	Stilbene	1P21	2000
	1961	Natlon 136	XP1020	210
PRF	1966	Natlon 136	C70045A	185
The performance of a fast-timing	1970	NE111	XP1021	132
The performance of a fast-timing coincidence circuit is characterized by its		BiBuQ	XP2020	80
prompt response function $P(t)$,	1982	$\mathrm{NaI}(\mathrm{TI})$	XP2020	290
obtained in the limit $\tau \rightarrow 0$		CsF	XP2020	150
obtained in the limit $\tau \rightarrow 0$.		BaF_{2}	XP2020Q	112
	1989	BaF_{2}	R2083Q	101
Optimization	2010	$\mathrm{LaBr}_{3}(\mathrm{Ce}) 1^{\prime} \times 1^{\prime}$	XP20D0B	150
		$\mathrm{LaBr}_{3}(\mathrm{Ce}) 1.5^{\prime} \times 1.5^{\prime}$	XP20D0B	180
- cooling and polishing; - optimal geometry: sizes and shap	Semiconductor detectors	$\mathrm{LaBr}_{3}(\mathrm{Ce}) 2^{\prime} \times 2^{\prime}$	XP20D0B	300
optimal geometry: sizes and shapes;		$\mathrm{Ge}(\mathrm{Li})^{\text {b,d }}$		5700
		$\mathrm{Si}^{\text {c }}$, e		180

Table: ${ }^{\text {a }}$ Dynode pick-up; ${ }^{b} 35 \%$ coaxial detector; ${ }^{\text {c }}$ surface barrier detector; ${ }^{d}$ measured with ${ }^{60}$ Co source; ${ }^{e}$ measured $5.7-\mathrm{MeV} \alpha$-particles. Plastic scintillator is used as a reference.

$\mathrm{LaBr}_{3}: \mathrm{Ce}$

E.V.D. van Loef et al., App.Phys.Lett. 79 (2001) 1573

Properties

-dopant: $\mathrm{Ce}^{3+}, 0.5 \%$
-PMT: Hamamatsu R1791

- Emission wavelenght: Peaks at 356 and 387 nm -Light output: $61000(5000)$ photons/MeV for 662-keV
-Decay time: 90% of the emitted light decays with a decay time of 35 ns .
-Energy resolution: 2.85(5)
- Time resolution: 385 ps. Measured against BaF_{2} detector

Decay curves of (a) $\mathrm{LaBr}_{3}: 0.5 \% \mathrm{Ce}^{3+}$,
(b) $\mathrm{LaCl}_{3}: 10 \% \mathrm{Ce}^{3+}$ and
(c) Nal:TI

$\mathrm{LaBr}_{3}: \mathrm{Ce}$

E.V.D. van Loef et al., App.Phys.Lett. 79 (2001) 1573
Properties
-dopant: $\mathrm{Ce}^{3+}, 0.5 \%$
-PMT: Hamamatsu R1791

- Emission wavelenght: Peaks at 356 and 387 nm -Light output: $61000(5000)$ photons $/ \mathrm{MeV}$ for 662-keV
-Decay time: 90% of the emitted light decays with a decay time of 35 ns .
-Energy resolution: 2.85(5)

Time resolution of (a) $\mathrm{LaBr}_{3}: 0.5 \% \mathrm{Ce}^{3+}$ detector
-Time resolution: 385 ps. Measured against BaF_{2} and
(b) BaF_{2} detector
-PMT: XP2020Q
-Energy threshold: $E \geq 800 \mathrm{keV}$
-Time resolution: 385(3) ps

$\mathrm{LaBr}_{3}: \mathrm{Ce}$

E.V.D. van Loef et al., App.Phys.Lett. 79 (2001) 1573
Properties
-dopant: $\mathrm{Ce}^{3+}, 0.5 \%$
-PMT: Hamamatsu R1791

- Emission wavelenght: Peaks at 356 and 387 nm -Light output: $61000(5000)$ photons $/ \mathrm{MeV}$ for 662-keV
-Decay time: 90% of the emitted light decays with a decay time of 35 ns .
-Energy resolution: 2.85(5)

-Time resolution: 385 ps. Measured against BaF_{2} Energy resolution of a single $\mathrm{LaBr}_{3}: 0.5 \% \mathrm{Ce}$ crystal detector for x / γ rays from ${ }^{241} \mathrm{Am} / \mathrm{Mo},{ }^{241} \mathrm{Am}$ and ${ }^{137} \mathrm{Cs}$ sources.

Systematics of the ns-isomers.

The search is made through out the entire chart of nuclei.
S. Lalkovski

In-Beam Fast-Timing Technique for Nuclear Structure Studies

Proton- γ technique

S.Cochavi, J.M.McDonald, and D.B.Fossan, Phys.Rev.C3 (1971) 1352

FIG. 4. A schematic diagram of the experimental electronics for the $p-\gamma$ delayed-coincidence technique.
-Start: $1000-\mu \mathrm{m}$ silicon detector, gated on the 5_{1}^{-} proton group
-Stop: $1 \frac{1}{2}$-in $\times 1 \frac{1}{2}$-in Nal, gated on $244-\mathrm{keV} \gamma$-rays

Proton- γ technique

S.Cochavi, J.M.McDonald, and D.B.Fossan, Phys.Rev.C3 (1971) 1352

Proton spectrum from ${ }^{92} \mathrm{Mo}\left(p, p^{\prime} \gamma\right)$ reaction.

$$
T_{\text {kin }}(\text { channel })=Q-E^{\star}
$$

FIG. 5. The experimental decay curve for the 2527$\mathrm{keV} 5_{1}^{-}$state in ${ }^{92} \mathrm{Mo}$. The decay curve for the 5_{1}^{-}state is shown with filled circles and the solid line. The right slope of the decay curve corresponds to a mean life τ $=2.24 \pm 0.06 \mathrm{nsec}$. The open circles represent the

$\beta-\gamma-\gamma$ coinc.

H.Mach, R.L.Gill and M.Moszyński, NIMA280 (1989) 49

Detectors

- one 3 mm thin NE111A plastic scintillator, coupled to XP2020 PMT, and mounted at 4-7 mm from the source.
- one conical BaF_{2} crystal with $\phi=2.5$ and 1.9 cm and $h=1.3 \mathrm{~cm}$, coupled to XP2020 PMT. - two HPGe detectors, placed $5-7 \mathrm{~cm}$ from the source.

$\beta-\gamma-\gamma$ coinc.

$\beta-\gamma-\gamma$ coinc.: Electronics

H.Mach, R.L.Gill and M.Moszyński, NIMA280 (1989) 49

S. Lalkovski

In-Beam Fast-Timing Technique for Nuclear Structure Studies

$\beta-\gamma-\gamma$ coincidences

H.Mach, R.L.Gill and M.Moszyński, NIMA280 (1989) 49
(a)

Fig. 1. General features of a decay scheme following the decay of a β-emitter of low spin (a) and high spin (b) and (c). See the text for details.

The time distribution centroid position is $\tilde{t}=\sum_{j} f_{j} t_{j} / \sum_{i} f_{i}$,
where t_{i} is the time channel and f_{j} is the number of counts in the channel j.

A relative comparison: sequential transitions

- If γ_{1} is detected by the Ge detector (HPGe) and γ_{2} - by the fast-timing detector (FTD), while β_{2} by the β detector (BT), then the time delay is

$$
t_{1}=\tau_{0}+\tau_{2},
$$

where τ_{0} is the PRF position and τ_{2} is the mean lifetime (MNLT) for level " 2 ".

- If γ_{2} is detected by the HPGe and γ_{1} - by the FTD, while β_{2} by the BT detected by the, then the time delay is
$t_{2}=\tau_{0}+\tau_{1}+\tau_{2}$,
where τ_{1} is the MNLT of level " 1 ":
$\tau_{1}=t_{2}-t_{1}$.

$\beta-\gamma-\gamma$ coincidences

H.Mach, R.L.Gill and M.Moszyński, NIMA280 (1989) 49

(a)

Fig. 1. General features of a decay scheme following the decay of a β-emitter of low spin (a) and high spin (b) and (c). See the text for details.

A relative comparison: parallel transitions

- If γ_{4} in HPGe, γ_{1} in FTD and β_{4} in BD, then $t_{4}=\tau_{0}+\tau_{1}+\tau_{3}+\tau_{4}$.
- If γ_{5} in HPGe, γ_{1} in FTD and β_{4} in BD, then $t_{5}=\tau_{0}+\tau_{1}+\tau_{4}$, and the MLT of level " 3 " is
$\tau_{3}=t_{4}-t_{5}$

Absolute comparison

- If τ_{2} is known, the equation
$t_{1}=\tau_{0}+\tau_{2}$
can be used to determine PRF position. Then, the MLT for each level can be calculated.

$\beta-\gamma-\gamma$ coinc.: Example

H.Mach, R.L.Gill and M.Moszyński, NIMA280 (1989) 49
(up) BaF_{2} energy spectra, gated on $122-\mathrm{keV}$ and $809-\mathrm{keV}$ transitions with HPGe
(down,left) Partial level scheme of ${ }^{96} \mathrm{Y}$ (down, right) Deconvoluted time distribution, gated on $122-\mathrm{keV}$ and 809-keV transitions.

In-beam $\gamma-\gamma$ coincidences

W.Andrejtscheff, M.Senba, N.Tsoupas, Z.Z.Ding, NIMA204 (1982) 123

Production

- Excited states, populated in HI reactions with ${ }^{16} \mathrm{O}$ and ${ }^{12} \mathrm{C}$ beams.

Detectors

- two $7.5 \times 7.5 \mathrm{~cm}$ Pilot B plastic scintillator, providing "start" TAC signal
or use a beam pulsing system for "start" and - one $10-\mathrm{ccm}$ planar HPGe, providing "stop" TAC signal
or - a coaxial $\mathrm{Ge}(\mathrm{Li})$ detector, providing "stop" TAC signal

Electronics

- Leading Edge Discriminator with a threshold set at $E_{\gamma} \approx 150 \mathrm{keV}$ for the plastic scintillator and $E_{\gamma} \approx 80-150 \mathrm{keV}$ for the Ge detectors.
- Time-to-Amplitude converter

In-beam $\gamma-\gamma$ coincidences

W.Andrejtscheff, M.Senba, N.Tsoupas, Z.Z.Ding, NIMA204 (1982) 123

HI beam

In-beam $\gamma-\gamma$ coincidences

W.Andrejtscheff, M.Senba, N.Tsoupas, Z.Z.Ding, NIMA204 (1982) 123

Fig. 3. Prompt and delayed γ-ray spectra as well as the centroid diagram demonstrating the lifetime of the 1256 keV level in ${ }^{109} \mathrm{Sn}$ as $T_{1}=2.0 \pm 0.3 \mathrm{~ns}$.

Fig. 4. Partial level scheme [14] and centroid diagrams concerning the lifetimes of the ${ }^{106} \mathrm{Cd}$ levels at $3679 \mathrm{keV}\left(9^{-}\right)$and 3508 $\mathrm{keV}\left(8^{-}\right)$. The time background subtracted per channel from each time curve amounts to 0.05% and 0.001% from the total number of counts. respectively (see also fig. 2).

How we produce excited nuclear states?

lon sources: sputtering source

- Cs ions are evaporated from the oven, heated to 1000°
- part of the Cs ions condensate on the cathode, others are positively ionized by the ionizer
- the ionized Cs atoms are accelerated by the negative potential $(6 \mathrm{kV})$ on the cathode, sputtering atoms from the cathode material
- by passing through the condensed cesium atoms on the cathode surface, the sputtered atoms capture an electron and become negatively charged ions
- the negative ions are accelerated away by the negative cathode potential and extracted through the positively charged (12 kV) extractor
- the beam is pre-accelerated in a $50-\mathrm{kV}$ potential and injected into the accelerator, after being analyzed with a bipolar magnet

Accelerator: 9 MV Tandem accelerator

Equipment to produce negative ions
It outputs negative ions at energy of around 100 to 200 keV .

- stripper: 5-10 $\mathrm{mg} / \mathrm{cm}^{2}$ carbon foils
- kinematics
$E=(q+1) V$
E - kinetic energy in MeV
V - terminal voltage in MV q - charge - analyzing magnet: A / q

In-beam $\gamma-\gamma-\gamma$ coincidences

detectors

- two 1-in $\times 1$-in cylindrical $\mathrm{LaBr}_{3}: \mathrm{Ce}$, mounted on a XP20DOB PMT and placed on forward angles. - two $1.5-\mathrm{in} \times 1.5-\mathrm{in}$ cylindrical $\mathrm{LaBr}_{3}: \mathrm{Ce}$, mounted on a XP20DOB PMT placed on forward angles.
- one 2-in $\times 2$-in cylindrical $\mathrm{LaBr}_{3}: \mathrm{Ce}$, mounted on a XP20DOB PMT placed on a forward angle.
- two HPGe detectors, placed on 90° with respect to the beam axis.

RoSphere

detectors

- 14 HPGe detectors with active Compton suppression
- $11 \mathrm{LaBr}_{3}: \mathrm{Ce}$ detectors with passive Compton suppression

Shielded HPGe detector

- HPGe detector
- BGO scintillator for shielding
- W collimator
- anti-coincidences between the BGO and HPGe

In-beam $\gamma-\gamma-\gamma$ coincidences

N.Marginean et al., EPJA46 (2010) 329

S. Lalkovski

In-beam $\gamma-\gamma-\gamma$ coincidences

N.Marginean et al., EPJA46 (2010) 329
 walk correction procedure

- ${ }^{60}$ Co source placed inside the target chamber; • one of the $\mathrm{LaBr}_{3}: \mathrm{Ce}$ detectors is chosen as a reference detector. - for each i of the rest of the detectors $E_{\gamma, i} \Delta T_{i}$ gated matrix is constructed, where ΔT is a time, relative to the reference detector. The gate is on $1332-\mathrm{keV}$ peak in the reference detector. - Polynomial fit to $T(E-\gamma)$ dependence.

Time resolution

$\bullet \approx 150$ ps for 1 -in detector

- $\approx 180 \mathrm{ps}$ for 1.5 -in detector
- $\approx 300 \mathrm{ps}$ for 2 -in detector

In-beam $\gamma-\gamma-\gamma$ coincidences

N.Marginean et al., EPJA46 (2010) 329

test case

S. Lalkovski

In-Beam Fast-Timing Technique for Nuclear Structure Studies

In-beam $\gamma-\gamma-\gamma$ coincidences

N.Marginean et al., EPJA46 (2010) 329

test case

S. Lalkovski

In-Beam Fast-Timing Technique for Nuclear Structure Studies

In-beam $\gamma-\gamma-\gamma$ coincidences

N.Marginean et al., EPJA46 (2010) 329
test case

S. Lalkovski

[^0]
In-beam $\gamma-\gamma-\gamma$ coincidences

N.Marginean et al., EPJA46 (2010) 329
${ }^{199} \mathrm{~T}$

$$
E_{y 2}
$$

In-beam $\gamma-\gamma-\gamma$ coincidences

N.Marginean et al., EPJA46 (2010) 329

S. Lalkovski

[^0]: In-Beam Fast-Timing Technique for Nuclear Structure Studies

