

UPPSALA UNIVERSITET

Institutionen för kärn- och partikelfysik (IKP) Department of Nuclear and Particle Physics

http://nsg.tsl.uu.se/nwall/

Johan Nyberg

Contents

- History
- Detectors and mechanics
- Electronics
- Performance
 - neutron-gamma separation
 - neutron efficiency
 - neutron scattering
- Future improvements?
- Links, references, etc.

Neutron Wall history

- Built for EUROBALL in 1995-1997
- Persons responsible for the development/construction:
 - Detectors and design: H. Grawe (GSI), Ö. Skeppstedt (Chalmers), M. Moszynski (Swierk)
 - Electronics: D. Wolski and M. Moszynski (Swierk)
- Financed by: Sweden, UK, Germany, Poland
- Experiments performed at EUROBALL/LNL, EUROBALL/IReS, EXOGAM/GANIL
- Owned by the European Gamma-Ray Spectroscopy Pool (former EUROBALL equipment)
- Located at GANIL (since 2005)

Neutron Wall detectors

- Liquid scintillator = BC501A
- Hexagonal detectors (H1,H2):
 - H1: 10 units
 - H2: 5 units
 - 3 segments/unit
 - 3.2 litres/segment
 - 1 PMT/segment: XP4512PA
- Pentagonal detector (P):
 - 1 unit
 - 5 segments/unit
 - 1.1 litre/segment
 - 1 PMT/segment: XP4312B
- Detector "thickness" = 15 cm

Neutron Wall array

- Total number of detector segments: 50
- Total liquid scintillator
 (BC501A) volume: 150 litres
- Total solid angle coverage: $\approx 1 \pi (\Omega/\pi = 0.5\% \text{ per hex.})$
- Mounted at 0° (forward hemisphere)
- Distance target to front face of detector: 51 cm
- Position of neutron detectors in array: http://nsg.tsl.uu.se/nwall/geometry/angles.html

NEUTRON WALL

viewed from outside of the array downstream of the target position

Detector and PMT numbering

Johan Nyberg, 2005-09-02

Johan Nyberg

Neutron Wall frame

Neutron Wall at the G2 beam line at GANIL

- New holding structure
 (frame) with rails designed
 and built by GANIL in 2004
- Has been used in EXOGAM experiments at the G2 beam line, GANIL, 2005-2006
- Present setup requires a beam dump after/outside the Neutron Wall ⇒ usage of 0° pentagon not possible

Frame will fit at beam line G1 together with EXOGAM and VAMOS (not tested yet)

Front-end Electronics

- NIM based
- Neutron-gamma PSA:
 - 2 channel NIM unit, NDE202
 - Zero-Cross-Over (ZCO) PSA method
 - Built by D. Wolski et al., Swierk

NDE202 block diagram

- -CFD for leading edge timing -Bipolar shaping amplifier for ZCO timing -Input signals:
 - •anode signal
 - •external time reference (TREF)
 - -Output signals (many):
 - •ZCO TAC:
 - -start ZCO
 - -stop CFD or TREF
 - TOF TAC:
 - -start CFD
 - -stop TREF
 - •QVC:
 - -integr. Q of anode signal
 - •N,G:

Johan Nyberg

-current (1 mA) "sumbus" signal for trigger system

Trigger, ADCs

- Trigger signal:
 - based on neutron fold signal: detection of at least N neutrons,
 N≥1
 - a similar gamma fold signal is also avialable
 - available about 450 ns after the output of the NDE202 CFD output
- ZCO TAC, TOF TAC, and QVC signals:
 - digitized by 32 ch / 14 bit peak sensing ADCs located in one of the EXOGAM VXI crates
 - read out though the standard EXOGAM DAQ system

Neutron-gamma discrimination

Time resolution and time reference

Good time reference signal is crucial!

Johan Nyberg

Intrinsic neutron efficiency

- ²⁵²Cf source
- BaF₂ detector as time
 reference
- Neutron energy determined from TOF

 absolut efficiency for one detector at 51 cm: ε_{n,abs} ≈ 0.005

Measurement by A. Chatterjee, BARC, India

Relative efficiency

Johan Nyberg

Efficiency in fusion-evaporation reaction

How to increase the neutron detection efficiency

- EXOGAM experiment ⁵⁸Ni (240 MeV) + ⁵⁴Fe:
 ε_{1n} ≈ 0.21
- Efficiency can be increased by
 - Including the pentagon: +0.03
 - No shadowing due to EXOGAM BGOs: +0.03
 - All detectors as good as #33: +0.05 (?)
- This would give $\varepsilon_{1n} \approx 0.32$
- Important increase, especially for experiments in which \geq 2 neutrons must to be detected.

Neutron scattering in the Neutron Wall

- Probability of 1 neutron giving a signal in 2 or more neutron detectors ≈ 7%
- A serious problem in search for weakly populated ≥2n reaction channels: scattered neutrons from much stronger 1n channels are mis-identified as 2n, 3n,... chs.
- Developed and tested methods to detect scattered neutrons:
 - Delta-TOF
 - Neighbour rejection
 - Deposited energy vs TOF
- Small amounts of gamma rays mis-identified as neutrons reduces dramatically the quality of the neutron scattering reduction
- Ref: J. Ljungvall et al., NIM A528(2004)741

Johan Nyberg

Discrimination of scattered neutrons by using the time-of-flight differences between neutron detector segments

Johan Nyberg

Discrimination of scattered neutrons

Possible future improvement: digital electronics

- Replace the aging analog NDE202 PSA units with digital electronics.
- FADC with 10 bits & 200 MHz (or more) ⇒ neutron-gamma separation which is as good as obtained with the NDE202 (see P-A Söderströms talk tomorrow).
- Such FADC are commercially available.

Some open questions regarding digital electronics

- Would 200 MHz give good enough TOF resolution?
- Is it necessary to implement PSA in real-time or can one read out the waveforms and do PSA offline? Two possible problems if this is done:
 - Event sizes much larger: 10 bits/200 MHz FADC, 500 ns traces \Rightarrow 200 bytes/detector. Can be "compressed"?
 - Not possible to create a fast neutron trigger signal. If needed, at least a simple/rough real-time neutron-gamma PSA should be implemented.
- Can we find PSA algorithms that give better n-g separation than the analog system?
- How to finance the upgrade to digital electronics?

Johan Nyberg

Neutron Wall references

- Web site: http://nsg.tsl.uu.se/nwall/
- ELOG: https://www.agata.org/elog/nwall/
- Technical papers:
 - The EUROBALL Neutron Wall design and performance tests of neutron detectors, Ö. Skeppstedt et al.
 - NIM A421 (1999) 531-541
 - Monte Carlo simulations of the Neutron Wall detector system, J. Ljungvall et al.
 - NIM A528 (2004) 741-762

Johan Nyberg

The end

 Many slides shown were made by Marcin Palacz. Thanks Marcin!