An overview of Neutron Wall Experiments performed at GANIL

Marcin Palacz Heavy Ion Laboratory, University of Warsaw

Marcin Palacz

NWall experiments run at GANIL

G. de France (GANIL) Neutron Wall Commissioning EXOC + SiC	GAM + NWall CD
N. Alahari (GANIL)Complete reaction studies with Borromean nuclei near the Coulomb barrierEXOC + SiC	GAM + NWall CD
S.J.Williams (Univ. Surrey) High-spin states in the T_z =-3/2 nucleus ³⁷ Ca - mirror symmetry at the largest values of isospin. EXO(+ DI/	GAM + NWall IAMANT
A. Gadea (LNL) Mirror energy differences in the A=58, T=1 mass triplet and charge symmetry breaking terms in the nuclear effective interaction above ⁵⁶ Ni.	GAM + NWall IAMANT
B.Cederwall (KTH Stockholm), R.Wadsworth (Univ. York)Search for T=0 pairing and a new coupling scheme in 92 Pd and 88 RuEXOC + DIA	GAM + NWall IAMANT
G. de Angelis (LNL)Electromagnetic decay properties of the Tz=1/2, A=67EXOCmirror pair: Isospin symmetry from E1 amplitudes.+ DI/	GAM + NWall IAMANT
M. Palacz (HIL Warsaw), J.Nyberg (IKP Uppsala) Single-particle energies and proton-shell gap in ¹⁰⁰ Sn extracted from high-spin states in ¹⁰³ Sn.	GAM + NWall IAMANT 2006
J-A. Scarpaci (IPN Orsay) Neutron correlation in ⁶ He studied through its nuclear Neut breakup.	tron Wall + N + Si det.

Neutron Wall Efficiency A.Chatteriee

Efficiency in fusion-evaporation reactions

ε_n≈ 0.21

Time resolution and time reference

Time ref. resolution crucial!

E403aS: Complete reaction studies with Borromean nuclei near the Coulomb barrier

N.Alahari A.Chatterjee

Beam:⁶He 2*10⁷ pps, 23MeV Target: ⁶⁵Cu 2.7 mg/cm² Detectors: EXOGAM+NWall+SiCD

Coincidences (a,n,γ) used to distinguish between 1n and 2n transfer reactions in the ⁶He+⁶⁵Cu system and to measure differential cross sections

 \Rightarrow insight into neutron correlations in ⁶He RIB used with NWall for the first time.

E498S: High-spin states in the T₂=-3/2 nucleus ³⁷Ca mirror symmetry at the largest values of isospin. S.Williams

Beam: ¹⁸Ne 65 MeV (¹⁶O 65MeV 5pnA) Target: ²⁴Mg 0.5 mg/cm² Detectors: EXOGAM+NWALL+DIAMANT Aiming at: ³⁷Ca + an

¹⁸Ne beam - expected: 10⁷pps - obtained: 10⁵pps, contaminated ¹⁸O

Aim changed: high spin states in ³⁸Ca, ¹⁶O beam, 2n reaction channel E482: Mirror energy differences in the A=58, T = 1 mass triplet and charge symmetry breaking terms in the nuclear effective interaction above ⁵⁶Ni A.Gadea, F.Della Vedova

- 36 Ar (85MeV) + 24 Mg $\rightarrow {}^{58}$ Zn + 2n
- Target: Au (70 µg/cm²), ⁶⁰Zn(0.5 mg/cm²), ⁹⁰Zr (5.4 mg/cm²)
 Severe technical problems:
- Target Installation → strong oxygen contamination, buildup of oxygen during the run, beam intensity 10 to 4 pnA.
 More than 70% of the reaction rate from the reaction on ¹⁶O

 Backing not optimized to stop the unexpected reaction products with ¹⁶O
 <u>Consequence</u>: in-flight transitions -not Doppler correctedtogether with the stopped ones→ sensitivity reduced

Reduced Nwall efficiency

Marcin Palacz

E482: Search for T=0 pairing and a new coupling scheme in ⁹²Pd and ⁸⁸Ru B.Cederwall, R.Wadsworth, K.Andgren

- ³⁶Ar (111MeV) + ⁵⁸Ni (6 mg/cm²) \rightarrow ⁹⁴Pd(CN) \rightarrow ⁹²Pd +2n \rightarrow ⁸⁸Ru +2a2n
- Identification of 2n channels not possible due to unexpectedly low neutron detection efficiency (about 10%)
- Analysed: ⁸⁶Mo + 2a and ⁸⁸Mo + 1a2p (Nwall only providing veto)
- See talk by Bob Wadsworth

E505: Electromagnetic decay properties of the Tz=1/2 A=67 mirror pair: Isospin symmetry from E1 amplitudes G. De Angelis, R.Orlandi

- ³⁶Ar (111MeV, 3pn) + ⁴⁰Ca \rightarrow ⁹⁴Pd(CN) \rightarrow ⁶⁷Se +2an
- Target: ⁴⁰Ca (1 mg/cm²), ⁹⁰ Zr(6 mg/cm²), protected by thin front layer of Bismuth
- Oxidation of the target made the observation of ⁶⁷Se impossible
- Analysis of lifetimes for products of reactions on ¹⁶O perhaps possible

E514: Single-particle energies and proton-shell gap in ¹⁰⁰Sn extracted from high-spin states in ¹⁰³Sn (1/2) M.Palacz, J.Nyberg, G. de France

- ⁵⁸Ni(240MeV) + ⁵⁴Fe(8mg/cm²) □ ¹¹²Xe(CN) □ ¹⁰³Sn + 2αn
- ε_n≈0.21 (assumed 0.3), ε_{2α}≈0.15 (0.4), ε_p≈0.50,
 ε_γ≈0.059 (0.07)
- beam current unexpectedly limited to 1.7 pnA (assumed 3 pnA) by single Ge count rate (10 kHz) estimated rates: fusion-evaporation ≈5 kHZ, Coulex ≥ 2 kHz
- beam time requested: 30UTS, effective: 18.4 UTS (good data: 12.2 UTS)
- combined $\epsilon_{n,\epsilon_{\gamma}}^{2}$, $\epsilon_{2\alpha}^{2}$, beam current and time effect reduced number of events collected with respect to proposal by a factor 0.11 (good data 0.08)
- severe trigger problem

E514: Single-particle energies and proton-shell gap in ¹⁰⁰Sn extracted from high-spin states in ¹⁰³Sn (2/2) M.Palacz, J.Nyberg, G. de France

trigger problem

low γ multiplicity channels suppressed due to additional γ required!

Marcin Palacz

E514: Neutron correlation in [°]He studied through its nuclear breakup (1/2) J.-A. Scarpaci, M.Assié

Beam:⁶He 2*10⁷ pps, 23 MeV

Target: 10 mg/cm²

Neutrons detected in NWall and EDEN

see talk by J.-A. Scarpaci

Summary and conclusions:

- 7 experiments:
 - 5 fusion-evaporation (1 RIB attempt)
 - 2⁶He breakup (1 without EXOGAM)
- Nwall efficiency: low eff. problem solved before the 2006 campaign- 21% could be ~ 26 % with pentagon and no shadowing
- 2 experiments suffered from ¹⁶O contamination
- efficiency assumptions too optimistic (NWall, EXOGAM, DIAMANT)
- beam current limited by EXOGAM if run (relatively) high above the Coulomb barrier
- better on-line monitoring needed