PANDA: Experiments to Study the Properties of Charm in Dense Hadronic Matter

- Overview of the PANDA Pbar-A Program
- The Pbar Facility
- The PANDA Detector
- Selected Simulation Results

Why Are Hadrons So Heavy?

Hadron Masses

Protons = (uud) ? $\begin{cases} 2M_u + M_d \sim 15 \text{ MeV/c}^2 \\ M_p = 938 \text{ MeV/c}^2 \end{cases}$

no low mass hadrons (except π , K, η)

spontaneously broken chiral symmetry

Spontaneous Breaking of Chiral Symmetry Although the QCD Lagrangian is symmetric, the ground state need not be. (e.g. Fe below T_{Curie})

Quark Condensate

The QCD vacuum is not empty

$$\left\langle q\overline{q}\right\rangle \neq 0$$

Hadron masses are generated by the strong interaction with $\langle q\bar{q} \rangle$ (also with gluon condensate)

The density of the quark condensate will change as a function of temperature and density in nuclei.

This should lead to modifications of the hadron's spectral properties.

Hadrons in the Nuclear Medium

Reduction of $<\bar{q}q>$

2 fm 1fm <qq>> 400 MeV 400 MeV **φ/φ**

Spectral functions

S.Klimt et al., Nucl. Phys. A515, 429 (1990).

W.Peters et al., Nucl. Phys. A632, 109 (1998).

Hadron Production in the Nuclear Medium

Mass of particles may change in dense matter

Quark atom

 $K^{-}(s\overline{u}): m_s/m_u \approx 40$

J/Ψ Absorption in Nuclei

 J/Ψ absorption cross section in nuclear matter $\overline{p} + A \rightarrow J/\Psi + (A-1)$

Advantages of p-A Reactions Compared to A-A

Much lower momentum for heavy produced particles (2 GeV for "free") (Effects are smaller at high momentum)

Open charm mass region (H atom of QCD) @HESR (single light quark)

Well defined nuclear environment (T and ρ)

Strange Baryons in Nuclear Fields

Hypernuclei open a 3rd dimension (strangeness) in the nuclear chart

• Double-hypernuclei: very little data

• Baryon-baryon interactions: Λ -N only short ranged (no 1π exchange due to isospin) Λ - Λ impossible in scattering reactions

 Ξ -(dss) **p**(uud) $\rightarrow \Lambda$ (uds)

The Experimental Facility

HESR: High Energy Storage Ring

Target

A fiber/wire target will be needed for D physics,
A pellet target is conceived: 10¹⁶ atoms/cm² for D=20-40 μm

Central Tracking Detectors

- MVD: (Si) 5 layers
- Straw-Tubes: 15 skewed double-layers
- Mini-Drift-Chambers

example event: $\overline{pp} \rightarrow \phi \phi \rightarrow 4K$

Open Charm

As an example of the Pbar P $\rightarrow \Psi(3770) \rightarrow$ DD Analysis Peak to background of about 6:1

Electromagnetic Calorimeter

Detector material	PbWO ₄
Photo sensors	Avalanche Photo Diodes
Crystal size	\approx 35 x 35 x 150 mm ³ (i.e. 1.5 x 1.5 R _M ² x 17 X ₀)
Energy resolution	1.54 % / √E[GeV] + 0.3 %
Time resolution	$\sigma \approx$ 130 ps (N.B. with PMT!)
Total number of crystals	7150

Detection of Rare Neutral Channels

As an example: $\eta_c \rightarrow \gamma \gamma$ (full phase space) Comparison with E835 (PLB 566,45)

Summary

- High luminosity cooled p-bar from 1-15 GeV/c
- Wide physics program including
 - pbar-A reactions
- Panda collaboration forming

Tracking Resolution

Single track resolution

Invariant mass resolution

Example reaction: $pp \rightarrow J/\psi + \Phi$ $(\sqrt{s} = 4.4 \text{ GeV/c}^2)$ $\sigma(J/\psi) = 35 \text{ MeV/c}^2$ $\sigma(\Phi) = 3.8 \text{ MeV/c}^2$