Radioactivity at the limits of nuclear existence

Zenon Janas

Institute of Experimental Physics University of Warsaw

p and 2p radioactivty

Proton radioactivity

$$(Z, N) \rightarrow (Z-1, N) + p$$

History of studies of proton radioactivity

1960 – prediction of possibility of p emission

History of studies of proton radioactivity

• 1981 – observation of ${}^{151}Lu \rightarrow {}^{150}Yb + p$ decay

S. Hofmann et al., Z. Phys. A305 (1982) 111

Proton radioactivity

Energy conservation

$$Q_p = M_i c^2 - M_f c^2 - m_H c^2 = -S_p > 0$$

Angular momentum and parity conservation

$$\vec{\mathbf{I}}_i = \vec{\mathbf{I}}_f + \vec{l}_p + \frac{\vec{1}}{2}$$

$$\pi_i \cdot \pi_f = (-1)^{l_p}$$

Proton radioactivity

$$(Z,N) \rightarrow (Z-1,N) + p$$

Probability of proton emission

$$\lambda_p = S \cdot \nu \cdot P_{lj}$$

S – spectroscopic factor

 ν – frequency of proton movement in nucleus

$$\nu = \frac{\mathrm{v}}{2R} \approx 6 \cdot 10^{21} \, \mathrm{s}^{-1}$$

 \mathbf{P}_{lj} – probability of barrier penetration $\mathbf{P}_{lj} = e^{-2G_{lj}}$ \mathbf{G}_{lj} – Gamow's factor

Gamow's factor

$$\mathbf{G}_{\ell j} = \int_{R_{in}}^{R_{out}} \sqrt{\frac{2\mu}{\hbar^2} \left(\mathbf{V}_p(r) - \widetilde{Q}_p \right)} dr$$

 $V_p(r)$ – interaction potential $V_p(r) = V_N(r) + V_C(r) + V_l(r)$

 R_{in}, R_{out} – turning points

WKB calculations for ¹⁵¹Lu

WKB calculations for ¹⁵¹Lu

for
$$l_p = 5$$
 $\frac{T_{1/2}^{WKB}}{T_{1/2}^{exp}} = 0.6$

Single-particle states

¹⁵¹₇₁ Lu₈₀
Valent particles:
5 protons on h_{11/2}
2 neutrons on d_{3/2}

S factors for p emitters with 64 < Z < 82

• filled proton orbitals : s_{1/2}, d_{3/2} i h_{11/2}

P.J. Woods et al., Anu. Rev. Nucl. Part. Sci. 47 (1997) 541

Proton decay of ¹³¹₆₃Eu

• production in fusion-evaporation reaction

$$\label{eq:relation} ^{78}\text{Kr} \ + \ ^{58}\text{Ni} \ \rightarrow \ ^{136}\text{Gd}^* \ \rightarrow \ ^{131}\text{Eu} \ + \ p4n \qquad \sigma = 90 \ nb$$

• recoil mass separation (FMA – Argonne)

decay spectroscopy

detector Double-sided Silicon Strip Detector

Typical parameters: $40 \times 40 \times 0.1 \text{ mm}$ $40 \times 40 \text{ strips}$

Rgistration of (X, E_x, t) and (Y, E_Y, t) enables:

- determination of X and Y position
- energy measurement
- determination of implantation decay time

Proton decay of ¹³¹₆₃Eu

120 hours of measurement

A. Sonzogni et al., Phys. Rev. Lett. 83 (1999) 1116

Single-particle states for $^{131}_{63}$ Eu

for transition

¹³¹Eu(d_{5/2}) \rightarrow ¹³⁰Sm(0⁺) + p $l_p = 2$ $T_{1/2}^{WKB} = 0.5$ ms $S_{exp} = 0.02$ $S_{th} = u_j^2 = 0.52$

B.Barmore et al., Phys. Rev. C62 (2000) 054315

Map of nuclear deformation

N -----

Fine structure in the *p*-decay of $^{131}_{63}$ Eu

A. Sonzogni et al., Phys. Rev. Lett. 83 (1999) 1116

WF structure of odd proton in ¹³¹₆₃Eu

$$\Omega^{\pi}[N, n_{z}, \Lambda] = \sum_{l, j} c_{lj} | N, \ell, j \rangle$$

Calculations including deformation

Lifetime

feeding of 2+

Conclusion:

proton emission from deformed 3/2+[411] state observed

C. Davids et al., Phys. Rev. Lett. 80 (1998) 1849

Known proton emitters

L. neutronów

p and 2p radioactivty

Two-proton radioactivity (3 isotopes)

$$(Z, N) \rightarrow (Z-2, N) + p + p$$

2p emission process

Two-proton radioactivity

• prediction - V. Goldansky in 1960

Experimental challenges

- detection of individual protons
- energy measurement
- determination of angular correlation

Predicted *p-p* opening angle for ⁴⁵Fe

L. Grigorenko : simulation for 200 events

Experiment at NSCL/MSU

Production: ⁵⁸Ni (161 MeV/u) + ^{nat}Ni \rightarrow ⁴⁵Fe Identification in-flight: $\Delta E + TOF$

Optical Time Projection Chamber

active volume 66%He + 32%Ar

- gating electrode

amplification

light detection

M. Ćwiok et al., IEEE TNS, 52 (2005) 2895 K. Miernik et al., NIM A581 (2007) 194

Protons after beta decay of ¹³O

K. Miernik. et al., NIM A 581(2007)194

Protons after beta decay of ¹³O

Y W Log right back on som

-Su

-2.5u

0.025-

-0.025-

-15u

Nut Product and the state

-12.5u

-10u

-7.5u

Time [s]

Ion identification

2p decay of ⁴⁵Fe

K. Miernik et al., PRL 99, 192501 (2007)

Decay scheme of ⁴⁵**Fe**

K. Miernik et al., PRC 76 (2007) 041304(R)

Partial 2p half-life of ⁴⁵Fe

3-body model: L.V. Grigorenko and M.V. Zhukov, PRC 68 (2003) 054005
 SMEC: J. Rotureau, J. Okołowicz, M. Płoszajczak, NPA 767 (2006) 13
 R-matrix: B.A. Brown, F.C. Barker, PRC 67 (2003) 041304

p-p angular correlation

K. Miernik *et al.*, PRL 99, 192501 (2007) L.V. Grigorenko and M.V. Zhukov, PRC 68 (2003) 054005

Summary

- studies of p and 2p decays provide information on:
 - limits of nuclear existence
 - masses of exotic nuclei
 - sequence of single-particle states
 - structure of WF of nuclear states