Spektroskopia gamma na wiązce Paweł J. Napiorkowski

Plan

- * Terminologia
- * Eksperyment w fizyce jądrowej
- Reakcje jądrowe
- Stany wzbudzone w jądrach atomowych schemat poziomów
- * Czasy życia stanów jądrowych struktura jądra atomowego
- * Wzbudzenia kulombowskie mikroskop jądrowy

* Spektroskopia

* Spektroskopia

nauka o powstawaniu i interpretacji widm powstających w wyniku oddziaływań wszelkich rodzajów promieniowania na materię (Wikipedia)

* Spektroskopia

- nauka o powstawaniu i interpretacji widm powstających w wyniku oddziaływań wszelkich rodzajów promieniowania na materię (Wikipedia)
- study of the absorption and emission of light and other radiation by matter, as related to the dependence of these processes on the wavelength of the radiation (*Brittanica*)

* Spektroskopia

- nauka o powstawaniu i interpretacji widm powstających w wyniku oddziaływań wszelkich rodzajów promieniowania na materię (Wikipedia)
- study of the absorption and emission of light and other radiation by matter, as related to the dependence of these processes on the wavelength of the radiation (*Brittanica*)
- to dziedzina nauki, która obejmuje metody badania materii przy wykorzystaniu zjawiska promieniowania

* Spektroskopia

- nauka o powstawaniu i interpretacji widm powstających w wyniku oddziaływań wszelkich rodzajów promieniowania na materię (Wikipedia)
- study of the absorption and emission of light and other radiation by matter, as related to the dependence of these processes on the wavelength of the radiation (*Brittanica*)
- to dziedzina nauki, która obejmuje metody badania materii przy wykorzystaniu zjawiska promieniowania

Widmo

* Spektroskopia

- nauka o powstawaniu i interpretacji widm powstających w wyniku oddziaływań wszelkich rodzajów promieniowania na materię (Wikipedia)
- study of the absorption and emission of light and other radiation by matter, as related to the dependence of these processes on the wavelength of the radiation (*Brittanica*)
- to dziedzina nauki, która obejmuje metody badania materii przy wykorzystaniu zjawiska promieniowania

Widmo

zarejestrowany obraz promieniowania rozłożonego na poszczególne częstości, długości fal lub energie (Wikipedia).

Terminologii c.d.

* Spektroskopia gamma

sztuka badania jąder atomowych przez interpretację liczby i energii kwantów gamma (fotonów) emitowanych przez nie.

* Na wiązce (on-line)

bezpośrednia obserwacja procesów wywołanych przez zainicjowaną reakcję jądrową

w odróżnieniu od spektroskopii off-line - badanie promieniowania będącego następstwem procesów zachodzących w jądrze atomowym

* Pomiar impulsu elektrycznego:

* Pomiar impulsu elektrycznego:

➡ amplituda

* Pomiar impulsu elektrycznego:

➡ amplituda

przebieg w czasie - Pulse Shape Analysis

* Pomiar impulsu elektrycznego:

➡amplituda

przebieg w czasie - Pulse Shape Analysis

* Oddziaływanie kwantu gamma z materią w detektorze:

* Pomiar impulsu elektrycznego:

➡amplituda

przebieg w czasie - Pulse Shape Analysis

* Oddziaływanie kwantu gamma z materią w detektorze:

Energia kwantu gamma

- * Pomiar impulsu elektrycznego:
 - ➡amplituda
 - przebieg w czasie Pulse Shape Analysis
- * Oddziaływanie kwantu gamma z materią w detektorze:
 - ➡Energia kwantu gamma
 - \blacksquare Czas oddziaływania (w sensie t₀ a nie Δ t)

- * Pomiar impulsu elektrycznego:
 - ➡amplituda
 - przebieg w czasie Pulse Shape Analysis
- * Oddziaływanie kwantu gamma z materią w detektorze:
 - ➡Energia kwantu gamma
 - \blacksquare Czas oddziaływania (w sensie t₀ a nie Δ t)
 - ➡Miejsce oddziaływania (PSA)

- * Pomiar impulsu elektrycznego:
 - ➡amplituda
 - przebieg w czasie Pulse Shape Analysis
- * Oddziaływanie kwantu gamma z materią w detektorze:
 - ➡Energia kwantu gamma
 - \blacksquare Czas oddziaływania (w sensie t₀ a nie Δ t)
 - ➡Miejsce oddziaływania (PSA)
- Stworzenie specyficznych warunków emisji i rejestracji kwantów gamma.

Reakcje jądrowe

Wiązka ²⁰Ne (140, 150 MeV) Tarcza ¹²²Sn Jądro złożone (CN) ¹⁴²Nd

Wiązka ²⁰Ne (140, 150 MeV) Tarcza ¹²²Sn Jądro złożone (CN) ¹⁴²Nd

Wiązka ²⁰Ne (140, 150 MeV) Tarcza ¹²²Sn Jądro złożone (CN) ¹⁴²Nd

Reakcje:

Wiązka ²⁰Ne (140, 150 MeV) Tarcza ¹²²Sn Jądro złożone (CN) ¹⁴²Nd

Reakcje: Z: 50+10=2(α)+58(Ce)

Wiązka ²⁰Ne (140, 150 MeV) Tarcza ¹²²Sn Jądro złożone (CN) ¹⁴²Nd

Reakcje: Z: 50+10=2(α)+58(Ce) A: 122+20=9+133

Wiązka ²⁰Ne (140, 150 MeV) Tarcza ¹²²Sn Jądro złożone (CN) ¹⁴²Nd

Reakcje: Z: 50+10=2(α)+58(Ce) A: 122+20=9+133

Wiązka ²⁰Ne (140, 150 MeV) Tarcza ¹²²Sn Jądro złożone (CN) ¹⁴²Nd

Reakcje: Z: 50+10=2(α)+58(Ce) A: 122+20=9+133

¹²²Sn(²⁰Ne, α5n) ¹³³Ce

Wiązka ²⁰Ne (140, 150 MeV) Tarcza ¹²²Sn Jądro złożone (CN) ¹⁴²Nd

Reakcje: Z: 50+10=2(α)+58(Ce) A: 122+20=9+133

¹²²Sn(²⁰Ne,α5n) ¹³³Ce ¹²²Sn(²⁰Ne,α6n) ¹³²Ce

Stany wzbudzone jednocząstkowe

stany "jednocząstkowe" – związane z ruchem jednego nukleonu; widoczne zwłaszcza w obszarach, gdzie liczby neutronów i protonów są bliskie liczbom magicznym

dają się opisać modelem powłokowym

Widmo i schemat poziomów ¹⁷⁸Hf

¹⁷⁸Hf

Widmo i schemat poziomów ¹⁷⁸Hf

¹⁷⁸Hf

Stany kolektywne

* stany kolektywne – związane z ruchem całego jądra powszechne w obszarach, gdzie liczba protonów i/lub neutronów jest daleka od liczb magicznych, a jądra atomowe mają kształt

zdeformowany.

Kształty jąder atomowych

- opis kształtu $R(\theta, \phi) = R_0 (1 + \sum \beta_{\lambda \mu} Y_{\lambda \mu}(\theta, \phi))$
- istotne kształty:
 - β₂ deformacja kwadrupolowa (≈ elipsoida trójosiowa)
 - β_3 deformacja oktupolowa (\approx gruszka)
- najczęściej występuje deformacja kwadrupolowa

$$\begin{split} R(\theta\,,\phi) = R_0(1 + \sum \alpha_{2\mu} Y_{2\mu}(\theta\,,\phi)) \\ \text{jeśli układ współrzędnych obrócimy zgodnie z kierunkami osi głównych,} \end{split}$$

to
$$a_{21} = a_{2-1} = 0$$
 i $a_{22} = a_{2-2}$

→ dwa parametry do opisu kształtu!

$$\alpha_{20} = \beta \cos(3\gamma)$$

$$\alpha_{22} = \frac{1}{\sqrt{2}}\beta \sin(3\gamma)$$

Rotacje jąder atomowych

- * Klasycznie: energia obrotu bryły sztywnej Erot=L²/2J
- * Kwantowo: $L^2 \sim I(I+1)$ Erot ~ I(I+1)/2J
- * Charakterystyczny układ poziomów: symetria dopuszcza tylko spiny parzyste dla jąder parzysto- parzystych.

Widmo i schemat poziomów ¹⁷⁸Hf

¹⁷⁸Hf

Stany wibracyjne

 $R(\theta,\phi) = R_0(1 + \sum \alpha_{2\mu} Y_{2\mu}(\theta,\phi))$

- parametry α_{μλ} określają kształt jądra atomowego
- rozważając oscylacje jądra jako drgania kropli cieczy dostajemy równanie oscylatora:

$$H_{osc} = \frac{1}{2} B_{\lambda} \left| \alpha_{\lambda \mu}^{\cdot} \right|^{2} + \frac{1}{2} C_{\lambda} \left| \alpha_{\lambda \mu} \right|$$

którego rozwiązaniem jest szereg stanów odległych o $\hbar\omega$, scharakteryzowanych liczbą fononów N_x:

Jednostka Weisskopfa

Zredukowane
prawdopodobieństwo
przejścia
elektormagneytcznego.

 $B(T\lambda, j_1 \rightarrow j_2) \sim 1/\tau$

* Dla stanów jednocząstkowych a zredukowane prawdopodobieństwo przejścia dane jest przez $B_{sp}(E\lambda; j_{1} \rightarrow j_{2}) = \frac{e^{2}}{4\pi} (2\lambda+1) \langle j_{1} \pm \lambda 0 | j_{2} \pm \rangle^{2} \langle j_{2} | r^{\lambda} | j_{1} \rangle^{2}.$ $< \lambda + \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2} \rangle^{2} = \frac{1}{2} (2\lambda+1) \qquad (3/(\lambda+3) \mathbb{R}^{\lambda})^{2}; \mathbb{R} = 1.2 \mathbb{A}^{1/3}$ otrzymujemy $B_{w}(E\lambda) = \frac{(1,2)^{2\lambda}}{4\pi} \left(\frac{3}{\lambda+3}\right)^{2} A^{2\lambda/3} e^{2} (fm)^{2\lambda}.$ $B_{w}(M\lambda) = \frac{10}{\pi} (1,2)^{2\lambda-2} \left(\frac{3}{\lambda+3}\right)^{2} A^{(2\lambda-2)/3} \left(\frac{eh}{2Mc}\right)^{2} (fm)^{2\lambda-2}.$

- # Jednostka Weisskopfa miarą kolektywizmu.
- * Typowe wartości B(E2)
 - * 1 W.u. przejście między stanmi jednocząstkowymi
 - * 10-50 W.u. przejścia kolektywne (np. związane z rotacją jądra)

A.Bohr, B.Mottelson, *Struktura jądra atomowego*, tom 1, Warszawa 1975

Pomiary czasów życia stanów jądrowych

* Fast Timing

bezpośredni pomiar zaniku aktywności (T>100ps) przy wykorzystaniu szybkich detektorów scyntylacyjnych np. LaBr3

metody wykorzystujące efekt Dopplera (T>10 fs)

- * Recoil Distance Method (RDM) metoda odległości przelotu jąder odrzutu
- Doppler Shift Attenuation Method (DSAM) metoda osłabienia przesunięcia Dopplera dla hamujących jąder odrzutu

Fast Timing Warsztaty międzynarodowe ŚLCJ 2011

experimental setup

Our results:
1,43 ns

Literature result: 1,44 ns

•

Recoil Distance Method

odpowiednia dla czasów życia ok. $10^{-9} - 10^{-12}$ s

$$E_{\gamma} = E_0 \left(1 + \frac{v}{c} \cos \theta \right)$$

Recoil Distance Method

zmniejszamy odległość D:

$$R(D) = \frac{I_o}{I_o + I_s} = \exp\left(-\frac{D}{v \tau}\right)$$

Przykład ⁷⁴Kr (M.Zielińska)

Plunger by A. Devald

Wzbudzenia kulombowskie

- Wyznaczenie rozkładu ładunku we wzbudzonych stanach jądra atomowego *mikroskop jądrowy*
- Przy ograniczonej energii cząstki padającej (odległość 5 fm między powierzchniami jądrowym) można zaniedbać siły jądrowe opisując proces formalizmem oddziaływania kulombowskiego

$$E_{\max}(MeV) = 1.44 \frac{A_1 + A_2}{A_2} \cdot \frac{Z_1 Z_2}{1.25(A_1^{1/3} + A_2^{1/3}) + 5}$$
(2.2)

 øbserwowane wzbudzenie zależy silnie od kąta rozproszenia, liczb Z partnerów reakcji, deformacji rozkładu ładunku jąder (a więc struktury jąder atomowych) Schemat układu eksperymentalnego

Detektory cząstek

Schemat układu eksperymentalnego

Detektory cząstek

Detektory y

z akceleratora

5†

3+

Deformacja

Quadrupole deformation (Left) oblate, $\beta < 0$ (Right) prolate, $\beta > 0$

nature

THE INTERNATIONAL WEEKLY JOURNAL OF SCIENCE

GOING PEAR-SHAPED

Exotic radium-224 atomic nuclei seen at CERN PAGES 190 & 199

STAYING IN TOUCH Prosthetic limbs with sensory feedback PAGE 176

HEATED ARGUMENT Researchers at odds over climate-violence link

PAGE179

THE AGE OF THE BRAIN Inflammation links ageing to the hypothalamus PAGES 197 & 211

NEUROSCIENCE

O NATURE.COM/NATURE

NEWS & VIEWS

FORUM Nuclear physics Exotic pear-shaped nuclei

The elusive pear shapes of certain nuclei, which are challenging to predict theoretically, have at last been measured precisely. Two experts offer their views on what the results mean for nuclear physics and particle physics. SEE ARTICLE P.199

THE PAPER IN BRIEF

Atomic nuclei are not only spherical, but can be found in a variety of shapes -- for example, squashed or stretched spheres. The existence of pear-shaped nuclei has long been predicted, but although some qualitative signatures of this nuclear shape have been found, only sparse quantitative information has been obtained.

Novel nuclear antennas

C. J. (KIM) LISTER

A t the centre of every atom lies a dense. Ahighly charged nucleus containing 99.999% of the atom's mass. Although this has been known for 100 years - since Ernest Rutherford's discovery of the nucleus - there is still much that we do not understand about nuclei and nuclear matter. Gaffney et al. have special nuclei represent specific tests of such improved our knowledge of nuclear structure by quantifying one specific and unusual nuclear shape.

In an atom, the static external electric field generated by the tiny central nuclear charge is spherical, so the cloud of electrons that defines its chemical and mechanical properties is always spherical. The nucleus, however, is very different. It generates its own binding field, driven by the strong force that exists between

 Using accelerated beams of heavy. radioactive ions, Gattney et al.¹ have studied short-lived isotopes of radon and radium that are expected to be pear-shaped, and found a clear pear shape in the radium nucleus. The results have ramifications both for the understanding of nuclear structure and for testing the standard model of particle physics.

all of its constituent nucleons (neutrons and protons). As such, nuclei have a much less well-defined 'centre'. Nuclei are easily polarized away from spherical shapes (Fig. 1) - in fact, more than one-third of all nuclei are bound most tightly if they settle away from sphericity and into elongated, axially symmetrical 'rugby

ball' shapes. Quantum correlations between the nucleons are expected occasionally to favour more exotic shapes, such as pears, bananas or pyramids, although few of these shapes have been proven to exist in nature. These correlations, so experimental verification of exotic shapes allows a direct comparison of theoretical models to data. Gaffney and colleagues' study was specifically aimed at testing the octupole correlations that are predicted to lead to asymmetrical pear-shaped nuclei. These particular correlations arise only when a certain combination of quantum states straddles the Fermi surface, the boundary between states that are occupied by

particles and those that are empty. Excitation of coherent correlated pairs of nucleons between these states drives the whole nucleus into a pear shape. Of all known nuclei, the isotopes of radon, radium, thorium and uranium are predicted to have the strongest octupole correlations of this type, leading to static pear shapes as the most bound configuration.

Although the existence of pear-shaped nuclei has been predicted for a long time?, many of those anticipated to be the best candidates do not occur as stable nuclei in nature, so they have to be synthesized in a nuclear reaction before study. Practically, the nuclear charge distribution is a small rotating aerial, or antenna, so it radiates a special pattern of electromagnetic radiation. A pear-shaped antenna should emit enhanced electric-dipole and electric-octupole radiation patterns. In their study, Gaffney et al. report a direct measurement of these radiation patterns and their enhancement.

Their experiment is special: instead of using nuclei from the world around us, the authors tailor-made specific isotopes of radon and radium in a preparatory nuclear reaction. These special short-lived isotopes were harvested, prepared for acceleration by tearing off many of their electrons and then accelerated to about 10% of the speed of light as a beam of particles. The beams of heavy radioactive nuclei can then be scattered off thin metal foils to excite the antennas and make them radiate. This is the technique of Coulomb excitation - a purely electromagnetic technique for probing nuclear shapes

Figure 1 [Nuclear shapes. Nuclei can take several shapes, including a sphere (a), an oblate spheroid (b) and a prolate spheroid (c). Gaffney et al. have observed the more exotic pear shape (d).

© 2013 Macmillan Publishers Limited. All rights reser-

190 | NATURE | VOL 497 | 9 MAY 2013

ARTICLE

doi:10.1038/nature12073

Studies of pear-shaped nuclei using accelerated radioactive beams

L. P. Gaffney¹, P. A. Butler¹, M. Scheck^{1,2}, A. B. Hayes³, F. Wenander⁴, M. Albers⁵, B. Bastin⁶, C. Bauer², A. Blazhev⁵, S. Bönig², N. Bree⁷, J. Cederkäll⁸, T. Chupp⁹, D. Cline³, T. E. Cocolios⁴, T. Davinson¹⁰, H. De Witte⁷, J. Diriken^{7,11}, T. Grahn¹², A. Herzan¹², M. Huyse⁷, D. G. Jenkins¹³, D. T. Joss¹, N. Kesteloot^{2,11}, J. Konki²², M. Kowalczyk³⁴, Th. Kröll², E. Kwan¹⁵, R. Lutter¹⁶, K. Moschner⁵, P. Napiorkowski¹⁴, J. Pakarinen^{4,12}, M. Pfeiffer⁵, D. Radeck⁵, P. Reiter⁵, K. Reynders⁷, S. V. Rigby¹, L. M. Robledo¹⁷, M. Rudigier⁵, S. Sambi⁷, M. Seidlitz⁵, B. Siebeck⁵, T. Stora⁶, P. Thoele⁵, P. Van Duppen⁷, M. J. Vermeulen¹³, M. von Schmid², D. Voulot⁴, N. Warr⁵, K. Wimmer¹⁸, K. Wrzosek-Lipska^{7,14}, C. Y. Wu¹³ & M. Zielinska^{14,19}

There is strong circumstantial evidence that certain heavy, unstable atomic nuclei are 'octupole deformed', that is, distorted into a pear shape. This contrasts with the more prevalent rugby-ball shape of nuclei with reflectionsymmetric, quadrupole deformations. The elusive octupole deformed nuclei are of importance for nuclear structure theory, and also in searches for physics beyond the standard model; any measurable electric-dipole moment (a signature of the latter) is expected to be amplified in such nuclei. Here we determine electric octupole transition strengths (a direct measure of octupole correlations) for short-lived isotopes of radon and radium. Coulomb excitation experiments were performed using accelerated beams of heavy, radioactive ions. Our data on 220 Rn and 224 Ra show clear evidence for stronger octupole deformation in the latter. The results enable discrimination between differing theoretical approaches to octupole correlations, and help to constrain suitable candidates for experimental studies of atomic electric-dipole moments that might reveal extensions to the standard model.

The atomic nucleus is a many-body quantum system, and hence its distribution weighted by radius squared') is the lowest-order observshape is determined by the number of nucleons present in the nucleus and the interactions between them. For example, nuclei in their ground state in which the proton and neutron shells are completely filled ('doubly magic' nuclei) are spherical. If this configuration is excited, or if more nucleons are added, the long-range correlations between valence nucleons distort the shape from spherical symmetry and the nucleus becomes deformed. In most of these cases, it is well established that the shape assumed has quadrupole deformation with axial and reflection symmetry; that is, the nucleus is shaped like a rugby ball (prolate deformation) or as a discus (oblate deformation). For certain combinations of protons and neutrons, there is also the theoretical expectation that the shape of nuclei can assume octupole deformation, corresponding to reflection asymmetry or a 'pear-shape' in the intrinsic frame, either in a dynamic way (octupole vibrations) or having a static shape (permanent octupole deformation).

Octupole deformation and EDMs

Atoms with octupole-deformed nuclei are very important in the search for permanent atomic electric-dipole moments (EDMs). The observation of a non-zero EDM at the level of contemporary experimental sensitivity would indicate time-reversal (T) or equivalently charge-parity (CP) violation due to physics beyond the standard model. In fact, experimental limits on EDMs provide important constraints on many proposed extensions to the standard model"2. For a neutral atom in its ground state, the Schiff moment (the electric-dipole theoretical approaches have been developed to describe the observed

able nuclear moment. Octupole-deformed nuclei with odd nucleon number A (= Z + N, see below) will have enhanced nuclear Schiff moments owing to the presence of the large octupole collectivity (spatial correlation between particle states) and the occurrence of nearly degenerate parity doublets that naturally arise if the deformation is static3-5. Because a CP-violating Schiff moment induces a contribution to the atomic EDM, the sensitivity of the EDM measurement to CP violation over non-octupole-enhanced systems such as 199Hg (ref. 2), currently providing the most stringent limit for atoms, can be improved by a factor of 100-1,000 (ref. 4). Essential in the interpretation of such limits in terms of new physics is a detailed understanding of the structure of these nuclei. Experimental programmes are in place to measure EDMs in atoms of odd-A Rn and Ra isotopes in the octupole region (see for example, ref. 6) but so far there is little direct information on octupole correlations in these nuclei.

Strong octupole correlations leading to pear shapes can arise when nucleons near the Fermi surface occupy states of opposite parity with orbital and total angular momentum differing by 3h. This condition is met for proton number $Z \approx 34$, 56 and 88 and neutron number N≈ 34, 56, 88 and 134. The largest array of evidence for reflection asymmetry is seen at the values of $Z \approx 88$ and $N \approx 134$, where phenomena such as interleaved positive- and negative-parity rotational bands in even-even nuclei", parity doublets in odd-mass nuclei", and enhanced electric-dipole (E1) transition moments⁹ have been observed. Many

Oliver Lodge Laboratory, University of Liverpool, Liverpool L59 722, UK. Pinethal für Kemphysik, Technische Universität Darmstadt, Darmstadt, D. 44289, Germany. "Department of Physics and Astronomy University of Rochester, Rochester, New York 14627-0171, USA ¹⁵SOLDE, CERN (Organization Europienne pour la Rocherche Nucléane), Geneva CH-1211, Switzerland. ¹Institut für Kemphysik, Universität zu Käin, Köln D-50937, Germany, ⁶GANE, (Grand Acciliénsteur National d'Ions Lourch), Caen, BP:55027, F-14076, France. ¹Instituut voor Kem- en Stralingelysica, KU Leuven, Leuven B-3001, Belgium: "Department of Nuclear Physics, Lund University, Lund: PO Box 118, 221 (0), Sweden: "Department of Physics, University of Michigan, Ann Arbor, Michigan 48:04, USA. "School of Physics & Astronomy, University of Edinburgh, Edinburgh EH9 322, UK. 11906-CEN (Studiecentrum voor Kernenergie - Centre d'Etude de l'énergie Nucléaire), Mai B 2400, Belgium. 12 Department of Physics. University of Jvolation 3, Jvolation 97 - 40014, Finland, and Helicinia Inditute of Physics, PO Box 64, Fi-00014 Helicinia, Finland, ¹³Decartment of Physics, Linkersity of York, York Y010 500, UK, ¹⁴Heavy Ion Laboratory, University of Wanaw, Wanaw 02-003, Poland. ¹⁰Physics Division, Lawrence Livermore National Laboratory, Livermore, California 94551, USA. ¹⁰Maier-Leibnitz-Laboratoriu Maximilians-Universität and Technische Universität München, Garching D-85748, Germany. 11 Departamento de Fisica Teorica, Universitäd Autonoma de Madrid, Madrid 28049, Spain. 19 Physik Department E12, Technische Universität Monchen, Garching D-85748, Germany, 19DSM/IRFU/SPINA, CEA Saciay, Gif-sur-Ywette F-91191, France.

> 9 MAY 2013 | VOL 497 | NATURE | 199 02013 Macmillan Publishers Limited. All rights reserved

RESEARCH ARTICLE

Table 2 | The values of the E2 and E3 intrinsic moments, Q,

£	Nucleus						
	308PD	200 _{Re}	²²⁴ Ra	¹⁰⁶ Ra	230Th	³¹⁰ Th	31HU
2 (e fm ²) 3 (e fm ³)	179 = 4 (ref. 44) 2,100 = 20 (ref. 44)	434 ± 14 2.180 ± 130	632 ± 10 2.520 ± 90	717 ± 3 (ref. 23) 2,890 ± 80 (ref. 23)	900 ± 6 (ref. 45) 2140 ± 100 (ref. 47)	932 ± 5 (ref. 46) 1970 ± 100 (ref. 48)	1,047 = 5 (ref. 45) 2,060 = 120 (ref. 47)
dues of 0 and	in have are derived from the mo	striv algorith these Fig	Tissenthousents	with a lower of the states in such	interest 7 - Bill month in 1948	In walk on the Wildow and Wildow	and the local division when many south and

momentum of the state and π is its parity. (For ²³⁴Ra the previously measured value of τ_{2+} cannot be determined independently as the $2^+ \rightarrow 0^+$ transition is contaminated with the Ra X-rays.) In both cases the fitted matrix elements for the $2^+ \rightarrow 0^+$ E2 transition (²²⁰Rn) and for the $4^+ \rightarrow 2^+$ E2 transition (²²⁴Ra) were found to agree, within the experimental uncertainties, with the values obtained using the lifetime measurements.

The measured E1, E2 and E3 matrix elements for 220Rn and 224Ra are given in Table 1. The values of the intrinsic moments, Q2, are given in Fig. 3. These are determined from the experimental values of the reduced matrix element between two states having angular momenta I and I' induced to undergo a transition by the electromagnetic operator E_λ <I'||E_λ||I>, assuming the validity of the rotational model²². Here $\lambda = 1,2,3$ refers to E1, E2, E3 respectively. For the E2 and E3 matrix elements, the measured values are all consistent with the geo metric predictions expected from a rotating, deformed distribution of electric charge, although these data do not distinguish whether the negativeparity states arise from the projection of a quadrupole-octupole deformed shape or from an octupole oscillation of a quadrupole shape³². Table 2 compares the experimental values of Q_i derived from the matrix elements connecting the lowest states for nuclei near Z = 88 and N = 134 measured by Coulomb excitation. It is striking that while the E2 moment increases by a factor of 6 between 208 Pb and 204 U, the E3 moment changes by only 50% in the entire mass region. Nevertheless, the larger Q1 values for 224Ra and 226Ra indicate an enhancement in octupole collectivity that is consistent with an onset of octupole deformation inthis mass region. On the other hand, ²³⁰Rn has similar octupole strength to ²⁰⁸Pb, ^{230,232}Th and ²³⁴U, consistent with it being an octu pole vibrator. In the case of a vibrator, the coupling of an octupole phonon to the ground state rotational band will give zero values for matrix elements such as <1~||E3||4*>, because an aligned octupole phonon would couple the 4+ state to a 7- state. Although the present experiment does not have sensitivity to this quantity, this effect has been observed for ¹⁴⁸Nd in the $Z \approx 56$, $N \approx 88$ octupole region¹⁰, while for ²²⁶Ra the intrinsic moment derived from the measured <1"||E3||4"> is similar to that derived from the value of <0+||E3||3-> (ref. 23). The deduced shapes of 220Rn and 224Ra are presented in Fig. 4. Here the values of quadrupole and octupole

Figure 4 | Graphical representation of the shapes of ²³⁰Rn and ²³⁴Ra. the surface shown and the red outline, whereas b depicts static deformation in not change under rotation about the z axis.

202 | NATURE | VOL 497 | 9 MAY 2013 02013 Macmillan Publishers Limited, All rights reserved

deformation β_2 and β_3 were extracted from the dependence of the measured Q2 and Q3 on the generalized nuclear shape³⁴.

The conclusions drawn from the present measurements are also consistent with suggestions from the systematic studies of energy levels' (relative alignment of the negative-parity band to the positive-parity band) that the even-even isotopes ^{218–222}Rn and ²²⁰Ra have vibrational behaviour while ^{212–228}Ra have octupole-deformed character (see figures 12 and 13 in ref. 7). For odd-mass ²¹⁹Ra there is no evidence³⁵ for parity doubling, whereas for ²²¹Ra a parity doublet of states with I = 5/2 separated by 103.6 keV has been observed16. In the Ba-Nd region with Z ~ 56 and N ~ 88, where the octupole states arise from vibrational coupling to the ground-state band, the evidence for parity doubling of the ground state arising from reflection asymmetry is inconclusive^{17,18}. This suggests that the parity doubling condition that leads to enhancement of the Schiff moment15 is unlikely to be met in 219,221 Rn. On the other hand 225,225 Ra, having parity doublets separated by ~50 keV (ref. 21), will have large enhancement of their Schiff moments

The values of Q_i, deduced from the measured transition matrix elements, are plotted in Fig. 5 as a function of N. The anomalously low value of Q1 for 224Ra, measured here for the first time, has been noted elsewhere^{8,15,39}. The measured Q1 and Q2 values are in good agreement with recent theoretical calculations of the generator-coordinate extension of the Gogny Hartree-Fock-Bogoliubov (HFB) self-consistent mean field theory16, particularly using the D1M parameterization40, However, as remarked earlier, the trend of the experimental data is that the values of Q₃ decrease from a peak near ²²⁶Ra with decreasing N (or A), which is in marked contrast to the predictions of the cluster model calculations17. It is also at variance with the Gogny HFB meanfield predictions of a maximum for 224Ra (ref. 16). It should be noted, however, that relativistic mean field calculations14 predict that the maximum value of Q_3 occurs for radium isotopes between A = 226and 230, depending on the parameterization, and Skyrme Hartree-Fock calculations15 predict that 226 Ra has the largest octupole deformation. Both predictions are consistent with our data. We cannot completely eliminate the possibility that there are unobserved couplings from the ground state to higher-lying 3" states that should be added (without energy weighting) to the observed coupling to the

219 Ray, b. 229 Ra, Panel a depicts vibrational motion about symmetry between scale, blue to red, represents the p-values of the surface. The nuclear shape does

Podsumowanie

* Interpretacja energii obserwowanych kwantów gamma pozwala na badanie:

- * reakcji jądrowych
- struktury jąder atomowych

 Bogactwo obserwowanych zjawisk i procesów zależy od naszej pomysłowości w projektowaniu eksperymentów