rucical i liysics ill fiuligary

R. G. Lovas

Chairman, Nuclear physics Board, Hungarian Academy of Sciences

Institute of Nuclear Research, Debrecen, Hungary

SENEEN MEETING, KRAKÓW, 14–15 SEPTEMBER, 2004

Size of the Nuclear Physics Community in Hungary

Membership in the 'public body' of the Hungarian Academy of Sciences (HAS) (comprising all PhD-holders who wish to belong to it):

- 1. Board of Nuclear Physics of HAS
 - 5 members of the Academy (2 in Budapest, 3 in Debrecen, each elderly, but all active)
 - 89 other members (\sim 50 active, doing nuclear physics in Hungary)
- 2. Board of Radiation Protection, Environmental Physics and Reactor Physics of HAS
 - no members of the Academy
 - 32 other members of the 'public body' (~ 2 working partially on nuclear physics proper)
- 3. \sim 10 additional nuclear physicists (not members of the public body, or belonging to other boards or with PhD in preparation)
- 4. ${\sim}40\text{--}50$ senior nuclear physicists working on other applied research
- 5. <10 PhD students (some at Eötvös University, Bp., all in high-energy physics and 3 in Debrecen, nuclear structure and nuclear astrophysics)

- university full professors: 2 in Budapest, 6 in Debrecen, 1 in Pécs
- 'Doctors of Science': 27 (13 in Budapest, 13 in Debrecen, 1 in Pécs)
- heads of university departments:
 - -1 at Eötvös University (ELTE), Budapest
 - -1 at Technical University (BME), Budapest
 - -1 at University of Debrecen (DE)
 - -1 at University of Pécs (PTE)
- PhD-programs:
 - Eötvös University (ELTE), Budapest
 - University of Debrecen

Research institutes

- Research Institute for Particle and Nuclear Physics (RMKI), Budapest
- Institute of Nuclear Research (Atomki), Debrecen
- Institute of Isotope and Surface Chemistry, Chemical Research Centre, (KKK), Budapest
- Atomic Energy Research Institute (AEKI), Budapest

- - - - **-** - - **-**

- theory of (ultra)relativistic heavy-ion collisions and hadronic physics (6 in RMKI, 2 in ELTE, 3 in DE, 2 in PTE)
- (ultra)relativistic heavy-ion collision experiments at CERN and GSI: 5–10 in RMKI; overlap with particle physicists
- theory of exotic nuclear states: 6 in Atomki
- scattering theory: 4 in RMKI, 1 in BME, 3 in Atomki
- spectroscopy of exotic nuclei: 3 in ELTE (MSU), 3 in KKK (Bp. reactor, Lexington), 1 DE, 15 in Atomki (Atomki, Ganil, Strasbourg, Legnaro, KVI, GSI, RIKEN, RCNP)
- theory of nuclear astrophysics (1 in ELTE)
- experimental nuclear astrophysics: 4 in Atomki (Atomki, Bochum, Gran Sasso, Napoli, RIKEN)
- nuclear reactions for practical purposes: 5 in DE, 5 in Atomki
- all others in various applications (earth sciences, environmental physics, materials science) and in nuclear techniques (detection techniques, nuclear electronics)

Experimental facilities

- cyclotron and Van de Graaff accelerators (and tandem) in Atomki
- nuclear reactors at AEKI and BME
- neutron generator at DE